• Title/Summary/Keyword: anaerobic treatment

Search Result 771, Processing Time 0.026 seconds

A Study on VS Removal Efficiency and Methane Emission in Combined Anaerobic Digestion of Livestock Manure and Food Waste (가축분뇨 및 음식물쓰레기의 혐기성 소화 병합처리 시 VS 제거효율과 메탄 발생량의 관한 연구)

  • Choi, Young-Ik;Ji, Hyeon-Jo;Jung, Jin-Hee;Jung, Byung-Gil;Kim, Jung-Geon
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.737-742
    • /
    • 2018
  • Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane ($CH_4$) from the anaerobic digestion process; and third, to promote $CH_4$ production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), $CH_4$ production, and biodegradability.

Performance Enhancement of Anaerobic Treatment of Waste Sludge by Chemical Pretreatment (화학적 전처리를 통한 혐기성 슬러지 처리효율의 향상)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.16-25
    • /
    • 1998
  • Laboratory-scale experiment using anaerobic fluidized bed reactor was carried out to investigate the prehydrolysis step with caustic soda on the treatment efficiency of anaerobic sludge treatment, since the overall rate-limiting step for the complete anaerobic digestion of sludge was the hydrolysis step by extracellular bacterial enzymes of insoluble polymeric molecules. Reactors received a sludge which had not been pretreated, a 50-50 mixture of pretreated and untreated sludge, and the fully pretreated sludge. Hydraulic retention time of 10, 5, 2.5 days and 1 day were applied with an respective equivalent organic loading rate of 1.17, 2.23, 4.17, 11.24 gCOD/L/d. Reactor with the untreated sludge did not archieve adequate digestion even at the HRT of 5 days, and reactor, which received the 50-50 mixture, operated well at the HRT of 5 days, but began to show signs of unstable digestion at the HRT of 2.5 days. While, reactor, which was fed the hydrolyzed sludge, operated reasonably well at the 2.5 days, but was showing somewhat decrease in removal efficiencies. Results, therefore, have substantiated that the limiting reaction in the anaerobic treatment process is hydrolysis. The soluble COD did not significantly accumulate in the reactor as organic acid form, even when they were highly stressed. It was believed that this resistance to a build-up of organic acids and soluble COD behavior was mainly due to the maintenance of the methane bacteria in the fixed-film system which prevents washout as the organic loading increased. The anaerobic fluidized bed reactor was therefore effective for the digestion of waste activated sludge at short HRT.

  • PDF

Methane Production from the Mixture of Paperboard Sludge and Sewage Sludge in an Anaerobic Treatment Process (판지슬러지와 하수슬러지를 이용한 혐기성 처리 공정에서 메탄 생산)

  • Choi, Suk Soon;Lee, Hyun Min;Jeong, Tae-Young;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.228-231
    • /
    • 2012
  • In this work, the mixture of sewage sludge incubated in an anaerobic bioreactor for 35 days and paperboard sludge was treated in a batch anaerobic digester equipped with a ultrasonicator, and methane production during the treatment was investigated. The Soluble Chemical Oxygen Demand (SCOD) increased with increasing the amplitude of ultrasonicator, which help solubilizing paperboard sludge more effectively. The optimum amplitude of ultrasonicator for the enhancing methane productivity was found to be $142.5\;{\mu}m$ and the methane production amount increased as the anaerobic digestion period became longer. In addition, the anaerobic digestion was performed with various biomass (6000, 9000 and 12000 mg/L) and methane production increased with higher cell mass. These results will be used as valuable data to enhance the methane production from anaerobic digestion of the high concentration of organic wastes containing the paperboard sludge and sewage sludge.

Decrease of the Hydrogen Sulfide($H_2S$) in the Produced Biogas by the Anaerobic Digestion (혐기성소화 시 발생되는 $H_2S$ 감소에 관한 연구)

  • Hong, Jong-Soon;Kim, Jae-Woo
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.80-89
    • /
    • 2009
  • In the organic waste, food waste is the most difficult controls. In the study, food waste was treatmented to removal only the dockage. To decrease the hydrogen sulfide($H_2S$) in the produced biogas, iron chloride put in the anaerobic digester. Respectively treatment quantity of the food waste, content of the methane($CH_4S$) gas in the biogas, produced gases quantity, put in the quantity of the Iron chloride, pH, TS, Alkalinity, VFA, Ammonia. The results obtained from the experiment are as follows: 1. The produced biogases quantity/the treatment quantity of the food waste was $83.82{\sim}129.41m^3/ton$. 2. The content of the hydrogen sulfide($H_2S$) in the produced biogas is below of the 500ppm. The iron chloride put in the anaerobic digester. 200~300kg of the iron chloride put in the anaerobic digester at the steady-state. 400~850kg of the iron chloride put in the anaerobic digester at the unsteady-state. 3. Factor of the operator was the pH: 7.7~8.4, content of mathane: 55~65%. 4. TS(total solid) of the digestor sludge was 17~20%, Alkalinity was 38,500~41,750ppm, VFA(Volatile Fatty Acids) was 2,800~2,420ppm, Ammonia was 4,300~3,650ppm.

Optimization of Anaerobic Process by Enzyme Treatment of High Concentration Organic Substances in Food Wastewater

  • Tae-Hwan JEONG;Woo-Taeg KWON
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.2
    • /
    • pp.33-37
    • /
    • 2023
  • Purpose: Since 2013, marine dumping of wastewater has been banned, and research on eco-friendly and efficient land treatment has emerged. This study compared and tested changes in biogas production and anaerobic process efficiency depending on whether or not enzyme pretreatment was performed during anaerobic digestion from single-phase and two-phase to medium-temperature. Research design, data and methodology: The total sugar, direct sugar, pH, and acidity before and after fermentation were analyzed by G/C by anaerobic fermentation of the liquor wastewater, food wastewater 1, and food wastewater 2 at 30℃ for 67 hours, and the amount of methane gas generated was analyzed by balloon volume. Results: It was found that stable organic acid concentration and pH were found in the enzyme-treated food wastewater 2, and the amount of methane gas generated was also increased. Conclusions: When anaerobic digestion of the liquor wastewater and the food wastewater together, the performance of enzyme pretreatment resulted in increased digestive efficiency. It will be the basic data that can contribute to carbon neutrality and greenhouse gas reduction by increasing the production of biogas.

The Effect of Anaerobic Fermentation Treatment of Wheat bran on the Root-Knot Nematodes and the Quality of Melons in Plastic Film House Soil (밀기울 토양 혐기발효 처리가 멜론의 뿌리혹선충 방제 및 품질에 미치는 영향)

  • Park, Dong-Kum;Kim, Hong-Lim;Park, Kyoung-Sub;Huh, Yun-Chan;Lee, Woo-Moon;Lee, Hee-Ju
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • This study was conducted to investigate the effect of anaerobic fermentation of wheat bran to prevent root-knot nematodes which are infected in plastic house due to over 10 years continuous cultivation of fruits and vegetables. Anaerobic fermentation treatment of wheat bran was done for 20 days by mixture of 2,000 kg fresh wheat bran per 10 are and soil with water in 30 cm soil depth. Chemical treatment of fosthiazate was done by mixture of 6 kg soil for 7 days. Both treatments show suppression of density of rootknot nematodes, especially in anaerobic fermentation treatment. Anaerobic fermentation treatment keeps the low level of root-knot nematode density until 90 days of cultivation and also showed good effect of melon growth. Related with death percentage of melon plant, anaerobic fermentation treatment shows only 3% and also large size of quality fruit but control 65%. Anaerobic fermentation treatment of wheat bran have proved to control the level of root-knot nematodes instead of synthetic chemicals for at least one cropping season and it showed good effect to fruit quality.

Biodegradability Index Development Based on Aerobic Biodegradation, Anaerobic Biodegradation, and Toxicity Test (호기성 분해, 혐기성 분해 및 독성을 고려한 생분해도 지표 개발)

  • Yoo, Kyu-Seon;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.603-608
    • /
    • 2010
  • More than 8 millions of chemical have been used for human activities and lots of chemicals can not be degraded by microbial activities in this world. To show the biodegradability of a chemical, biodegradability index (B.I.) is suggested using aerobic biodegradability by $BOD_5$/COD, anaerobic biodegradability by methane potential (M.P.) and toxicity by the luminiscent bacteria. In this study, PVA (polyvinyl alcohol), HEC (hydroxy ethyl cellulose), 2,4,6-TCP (tri-chloro phenol) and 2,4-DCP (di-chloro phenol) are used for test chemicals. Though they show little toxicity, PAV and HEC have low B.I. because they are polymers having high molecular weight. That means that there are no bacteria that has enzyme to degrade polymer molecules. Also, anaerobic treatment is suggested better than aerobic treatment from B.I. 2,4,6-TCP and 2,4-DCP show high toxicity and have low B.I. Their low biodegradabilities seem to be originated from their toxicities. If B.I. is used in wastewater treatment, better treatment process can be suggested and finally it can lead our society to make more environment-friendly chemicals.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment (하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술)

  • Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.

Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste (음식폐기물을 이용한 혐기성 수소 발효 시 초기 운전 성능에 대한 열처리 효과)

  • Lee, Chae-Young;Lee, Se-Wook;Hwang, Sun-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.765-771
    • /
    • 2011
  • This study was conducted to investigate the effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste. The result showed that hydrogen production was $0.61{\pm}0.31$ mol $H_2$/mol hexose with heat-treatment of food waste at $70^{\circ}C$ for 60 min whereas it was $0.36{\pm}0.31$ mol $H_2$/mol hexose without heat-treatment of one. The heat treatment of food waste enhanced hydrogen yield due probably to the increase of hydrolysis as well as the decrease of non-hydrogen fermentation microorganisms. The removal efficiency of carbohydrate in reactors regardless of heat treatment of food waste maintained over 90%. The hydrogen conversion efficiency from food waste was 1.7-6.3% with heat-treatment whereas it was 0.7-4.5% without heat-treatment. At the time of switchover from batch to continuous operation, lactate concentration was high compared to the n-butyrate concentration in anaerobic hydrogen fermentation reactor without heat-treatment. Anaerobic hydrogen fermentation of food waste with heat treatment was stable in start-up periods because lactate concentration could be maintained at a relatively low compared to n-butyrate concentration due to the decrease of non-hydrogen fermentation microorganisms.