• Title/Summary/Keyword: anaerobic treatment

Search Result 772, Processing Time 0.027 seconds

Feasibility Studies on Anaerobic Sequencing Batch Reactor for Sludge Treatment

  • Chang Duk;Hur Joon-Moo;Son Bu-Soon;Park Jong-An;Jang Bong-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1997
  • Digestion of a municipal wastewater sludge by the anaerobic sequencing batch reactor(ASBR) was investigated to evaluate the performance of the ASBR process at a critical condition of high-solids-content feed. The reactors were operated at an HRT of 10 days with an equivalent loading rate of 0.8-1.5 gVS/L/d at $35^{\circ}C.$ The main conclusions drawn from this study were as follows: 1. Digestion of a municipal wastewater sludge was possible using the ASBR in spite of high concentration of settleable solids in the sludge. The ASBRS with 3- and 4-day cycle period showed almost identical high digestion performances. 2. No adverse effect on digestion stability was observed in the ASBRS in spite of withdrawal and replenishment of $30\%\;or\;40\%$ of liquid contents. A conventional anaerobic digester could be easily converted to the ASBR without any stability problem. 3. Flotation thickening occurred in thicken step of the ASBRS throughout steady state, and floating bed volume at the end of thicken period occupied about $70\%$ of the working volume of the reactor. Efficiency of flotation thickening in the ASBRS could be comparable to that of additional gravity thickening of a completely mixed digester. 4. Solids were accumulated rapidly in the ASBR during start-up period. Solids concentrations in the ASBRS were 2.6 times higher than that in the completely mixed control reactor at steady state. Dehydrogenase activity had a strong correlation with the solids concentration. Dehydrogenase activity of the digested sludge in the ASBR was 2.9 times higher than that of the sludge in the control reactor, and about 25 times higher than that of the subnatant in the ASBR. 5. Remarkable increase in equivalent gas production of $52\%$ was observed at the ASBRS compared with the control reactor in spite of similar Quality of clarified effluent from the ASBRS and control reactor. The increase in gas production from the ASBRS was believed to be combined results of accumulation of microorganisms, higher driving force applied, and additional long-term degradation of organics continuously accumulated.

  • PDF

Effect of the Addition of Granular Activated Carbon and Granular Sludge on the Performance of Upflow Anaerobic Sludge Blanket Reactors for Treating Leachate (상향류 혐기성 슬러지 블랭킷 반응조를 이용한 침출수 처리시 입상 활성탄 및 입상슬러지 첨가의 영향)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.91-97
    • /
    • 2008
  • The objective of this research is to investigate the effect of the addition of granular activated carbon (GAC) and granular sludge on the performance of upflow anaerobic sludge blanket (UASB) reactors for treating leachate. For the control reactor, sludge obtained from an anaerobic digester was used as a seed material. On the other hand, GAC and granular sludge were incorporated with the seed sludge in the GAC reactor and the Granule reactor, respectively. The shortest acclimation period was observed in the Granule reactor. The GAC reactor also gave comparable performance to the Granule reactor at the beginning of operation. However, as the adsorptive capacity of GAC was exhausted, the effluent COD concentration increased gradually. Once the systems were stabilized, the GAC reactor showed slightly better results than the other two reactors in terms of chemical oxygen demand (COD) removal. COD removal in all reactors was more than 90% at hydraulic retention time of 1.0 day. Furthermore, GAC reactor showed little variation in COD removal rate and remained at 95% with organic loading rate (OLR) of 4.0 to $8.2kg\;COD/m^3.d$. Initial operating period was reduced by the addition of granular sludge, while the treatment efficiency was enhanced by the addition of GAC.

  • PDF

Production of Methane from Anaerobic Fermentation of Marine Macro-algae (해조류의 혐기성 발효를 이용한 메탄 생산)

  • Kim, Jeong-Min;Lee, Yeung-Ho;Jung, Sung-Hoon;Lee, Jin-Tae;Cho, Moo-Hwan
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Methane was produced from the anaerobic digestion of marine macro-algae. Elemental analysis was first performed to estimate the theoretical methane production of three macro-algae (Undaria pinnatifida, Laminaria japonica, Hizikia fusiformis). Three algae were found to contain C 34 ~ 36%, H 5%, O 37 ~ 43%, N 2 ~ 4%, S 0.4 ~ 0.7%, and ash 14~21%, and the theoretical methane content was in the range of 56 ~ 60%, which can produce 442 ~ 568 mL $CH_4$ per g of volatile solid (VS). Using the biological methane potential (BMP) test, we found that L. japonica resulted in the highest yield of methane (52%). Moreover, various operational conditions, such as algae amount, pH, salinity, particle size, and pre-treatment, were investigated in order to find an optimal condition of anaerobic digestion. At pH 8.0, the autoclaved L. japonica (5g VS/200 mL), when used without washing salt, produced 268.5 mL/g VS which is 65% of the theoretical methane productions. Furthermore, using a CSTR (with the working volume of 7 L out of the total volume of 10 L), we have successfully operated the reactor for 65 days and obtained maximum methane production rate of 1.4 L/day with purity of 70%.

Study on the Treatability of High-Concetration Wastewater by ABBR (ASBR에 의한 고농도폐수의 혐기성처리 연구)

  • 김종찬;김요용;김세진;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1995
  • In the treatment of wastewater or sewage plant sludge with high solid concentration, high rate digestion process in which heating and mixing occur at a time is mainly used, and in the case of wastewater containing solid matter below 1000mg/ℓ the recently developed AF or UASB is developed Recently and commonly utilized. But these processes have weakpoints such as clogging of packing media and need of long period of trial run after microorganism granulation. In this point of view, there are active researches on the ASBR( anaerobic sequence batch reaction ) that is capable of treating of organic matter with reactor that has no packing materials and controlling the inflow time, reaction time sedimentation time and outflow time by time control without loss of microorganisms. The objectives of this study are to evaluate the efficiency of ASBR process according to the reaction time, change of treated water quality and gas output rate in the treatment of wheat plant wastewater.

  • PDF

A Study on the Characteristics of the Treatment with Bed Expansion and the Biomass Attachment in the Start-up of the AFBR (혐기성 유동층 반응기에서 층팽창에 따른 처리특성 및 미생물 부착특성)

  • 안재동;정종식;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.20-26
    • /
    • 1995
  • The objective of this study is to estimate the effect of the bed expansion and the characteristics of attached biomass in the start-up in the anaerobic fluidized bed reactor(AFBR). The fluidized bed reactor was operated with bacteria supported on the bed of granular activated carbon(GAC). The reactor was operated at 35$\circ$C, 5 kg $COD/m^3\cdot day$ at bed expansion varying from 0 to 100% with soluble glucose wastewater(5,000 mg/l). When the effluent reached a steady state at 100% of bed expansion, maximum COD removal efficiency of 87.3% and 0.031 $m^3CH_4/kg COD_{removed}$ were obtained. At higher bed expansion, COD removal efficiency, methane production rate and biogas production rate increased. Especially, at 50% of bed expansion, the efficiency of the treatment increasedg rapidly in the AFBR. The biomass colonized in the pits and crevices of the GAC particle and no complete biofilm was established in the bioreactor during the experiment.

  • PDF

Capture and Reduction Technology of Greenhouse Gas Using Membrane from Anaerobic Digester Gas (분리막을 이용한 혐기성 소화가스로부터 온실가스 회수저감 기술)

  • Hwang, Cheol-Won;Jeong, Chang-Hun
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1233-1241
    • /
    • 2011
  • The main objective of this experimental investigation was $CH_4$ recovery from biogas generated in municipal and wastewater treatment plant. The polysulfone hollow fiber membrane was prepared in order to investigate the permeation properties of $CH_4$ and $CO_2$. Permeability of $CO_2$ in Polysulfone membrane was 11-fold higher than of $CH_4$ gas. A membrane pilot plant for upgrading biogas was constructed and operated at a municipal wastewater treatment plant. The raw biogas contained 66 ~ 68 Vol % $CH_4$, the balance being mainly $CO_2$. The effect of the operating pressure of feed and permeate side and feed flowrate on $CH_4$ recovery concentration and efficiency were investigated with double stage membrane pilot plant. The $CH_4$ concentration in the retentate stream was raised in these tests to 93 Vol % $CH_4$.

Sewage Treatment Using a Modified DNR Process (수정 DNR 공정을 이용한 하수처리)

  • Choi, Jin-Taek;Nam, Se-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • In this study, the removal characteristics of organic components and nutrients of sewage taken from the Suwon area were investigated in a lab-scale modified DNR (Daewoo Nutrient Removal) process. The modified DNR process consisted of a sludge denitrification tank, an anaerobic tank, an anoxic tank, an aerobic tank, a secondary anoxic tank and a secondary aerobic tank. The proposed process with the average C/N ratio of 3.5 was performed for the sewage treatment. The results were compared with other existing DNR processes. The organic fractions in sewage were analyzed by measuring the oxygen uptake rate. The resulting removal efficiencies of SS, BOD, COD, TN and TP were 93.1%, 95.5%, 86.1%, 67.8% and 80.6%, respectively.

A Study on the pretreatment of Activated Sludge for Bio-hydrogen Production process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Kim Dong Kkun;Kim Ji Seong;Kim Ho Il;Lee Yu Na;Pak Dae Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.21-33
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operating at $35^{\circ}C$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods is most efficient process for sludge treatment. The pre-treatment activated sludge was tested to conform hydrogen production potential in batch experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition.

  • PDF

Application of the Hybrid Constructed Wetland for a Reuse of the Effluent from Bio-industrial Wastewater Treatment Plant (바이오산업폐수처리수의 재이용을 위한 hybrid 인공습지 시스템의 적용가능성 연구)

  • Shin, Jae-Suk;Kim, Sung-Chul;Cho, Kwang-Ju;Choi, Choong-Ho;Choi, In-Wook;Park, Jeong-Ja;Park, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • The hybrid constructed wetland(HCW) as tertiary treatment process of a bio industrial wastewater treatment plant was employed to estimate applications for the reuse of final effluent. Raw wastewater was sequently treated through chemical and biological treatment processes and the biologically treated water was flowed into the HCW. The HCW system was composed of two constructed wetlands connected in series; The one is the aerobic constructed wetland with natural air draft system whose driving force for air supply was the difference between the temperature of the air inside the wetland and the ambient air, and the other is the anaerobic/anoxic constructed wetland. Average influent concentrations of BOD, SS, T-N and T-P in the HCW were 53mg/L, 48mg/L, 34mg/L and 3mg/L, respectively. After being treated at HCW, final effluent concentrations of BOD, SS, T-N and T-P were 2.3mg/L, 1.2mg/L, 7.95mg/L and 0.83mg/L, respectively. Referring to a reuse standard for a sewage wastewater, final effluent could sufficiently be reuse as landscaping, washing or agriculture water. HCW system with the aerobic/anaerobic combined constructed wetland could be achieved a high removal efficiency because each constructed wetland was functionalized to be removed efficiently organics, nitrogen and phosphorus. HCW system could be estimated to be successful application as tertiary treatment process of a various industrial and municipal wastewater.

  • PDF

The Characteristics with HRT Variation on InSub Pilot Plant for Advanced Sewage Treatment

  • Kang, Jin-Young;Huh, Mock
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • The InSub system(applied for a patent) was developed, as it combined the indirectly aerated submerged biofiltration(InSub) reactor and Anaerobic/ Anoxic reactor. This system which can eliminate organism and nutrient materials at the same time, which is safe and economical to be maintained and managed is more simple process than the complicated existing biological advanced sewage treatment system. The most suitable HRT of this study showed 9 hours. As looking into the effluent concentration and removal efficiency of each item at 9 hours of HRT, each effluent concentration for $SS,\;BOD5,\;COD_{Mn},\;and\;COD_{Cr}$ was 1.46 mg/L, 7,09 mg/L, 9.84 mg/L and 16.42 mg/L. And their removal efficiency was 96.98%. 90.59%, 77.18% and 83.92%, respectively. Each effluent concentration of T-N and T-P was 10.42 mg/L and 1.04 mg/L. Their removal efficiency was 73.38% and 61.62%, respectively. This pilot plant experiment(the state was without the internal recycling.) followed a variety of HRT. The results confirmed that it was to be advanced sewage treatment system with high efficiency when it combined with the internal recycling.