• Title/Summary/Keyword: anaerobic digestion process

Search Result 191, Processing Time 0.024 seconds

Blast Furnace Slag as Media for an Anaerobic Fixed-Film Process (고로(高爐) 슬래그를 이용한 혐기성(嫌氣性) 생물막(生物膜) 공법(工法)에 관한 연구(硏究))

  • Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.135-141
    • /
    • 1989
  • Blast furnace slag presents coarse surface for microbes to grow on and high calcium and magnesium contents to neutralize acid to be produced during anaerobic digestion. Also, slag contains aluminum and iron oxides which would promote biological flocculation, and minerals which would stimulate microbial growth. Acid wastes like dairy waste, carbohydrate waste, sanitary landfill leachate and molases wastes were applied without neutralization to laboratory reactors to examine the applicability of blast furnace slag as media. The study results indicated slag media was effective to neutralize pH and maintain microbial population in the system. Particularly, COD removal efficiency was greater than those from plastic media operations treating dairy waste at higher loading rates.

  • PDF

Construction of Resource Recovery System for Organic Wastes (유기성 폐기물의 자원화 체제구축에 관한 연구)

  • 양재경;최경민
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.2
    • /
    • pp.290-308
    • /
    • 1999
  • In this study a system for the treatment or recyling of organic wastes from both urban and rural area was recommended. It was developed based on the resource recovery system regarding human being by four tectnologies; forage, methane production, high-grade composting and complete decomposition. High quality compost can be produced by combining several kind of wastes produced from urban and agricultural areas. High quality compost must possess not only general characteristics of ordinary compost, but also a superior ability to improve the soil properties and must contain more nutrients for plant. Cedar chips were recommended as the main bulking agent to adjust moisture contents and air permeability. Charcoal and zeolite can be used not only as the second bulking agent but also as fertilizer for improve the soil amendment. Complete decomposition of organic wastes is defined by organic matter being completely converted to $CO_2$ and water. All the input water was evaporated by the heat produced through the oxidation of organic matter, In the present study, the complete treatments were successfully achieved for Shochu wastewater, swine wastes, thickened excess sewage sludge, wastes produced by Chinese restaurant and anaerobic digested sludge. First of all, recycling center of organic wastes should be established for the protect the environments and effective recovery of organic resources. This may means the way to derive the recovery of human value.

  • PDF

Cultivation of Spirulina platensis Using Pig Wastewater in a Semi-Continuous Process

  • Chaiklahan, Ratana;Chirasuwan, Nattayaporn;Siangdung, Wipawan;Paithoonrangsarid, Kalyanee;Bunnag, Boosya
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.609-614
    • /
    • 2010
  • The effluent from anaerobic digestion contains organic nitrogen and phosphorus, which are both required for growth of Spirulina platensis. Effluent (20%) from the upflow anaerobic sludge blanket (UASB) from a pig farm, supplemented with 4.5 g/l sodium bicarbonate ($NaHCO_3$) and 0.2 g/l urea fertilizer (46:0:0, N:P:K), was found to be not only a suitable medium for the growth of Spirulina platensis but also a low-cost alternative. Cost calculation showed that this medium is 4.4 times cheaper than modifized Zarrouk's medium. The average productivities of a semi-continuous culture grown under outdoor conditions in a 6-1 scale and a 100-1 pilot scale were 19.9 $g/m^2/d$ and 12 $g/m^2/d$, respectively. In addition, the biomass of organisms grown in UASB effluent contained approximately 57.9% protein, 1.12% $\gamma$-linolenic acid, and 19.5% phycocyanin. The average rates of bicarbonate, total nitrogen, and phosphorus removal were 380 mg/l/d, 34 mg/l/d, and 4 mg/l/d, respectively.

A Study on the Characteristics of Livestock Manure Treatment Facility in Korea (국내 가축분뇨 처리시설 형태별 특성조사 분석)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Khan, Modabber Ahmed;Han, Duk-Woo;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.28-44
    • /
    • 2014
  • Due to development of the national economy growth, livestock goods consumption has rapidly increased over the past 30 years. It has led livestock breeders to increase their livestock numbers. An increased number of livestock have consequently resulted in an increasing animal feces generation. According to the agricultural statistics provided by the Bureau of Statistics, livestock manure amounts to 47,235 thousand tons in 2013. To treat livestock manure, various types of treatment facilities like composting, liquid fertilization, purification, and anaerobic digestion facilities are being applied. In composting facility, there are four kinds of agitation system: escalator, paddle, screw and rotary type. In case of liquid fertilization process, there are two types of system: aeration and anoxic type. There are about 8,000 liquid fertilization facilities for treatment livestock manure in Korea. For purification of livestock manure, the treatment process is divided by three steps: Solid/Liquid separation process, Secondary purification process and advanced oxidation process. About 21 thousand tons of livestock manure was treated by anaerobic digestion facility in 2012. In every type of facility for livestock manure treatment, it is very important to choose the optimal deodorization equipment for the livestock manure treatment facility. In this study, the investigation has been carried out for six years to analyse the characteristics of livestock manure treatment facilities and related technique of Korea.

Analysis of Greenhouse Gas Emission associated with Clean Energy Agriculture System Development (청정에너지농업시스템 개발에 따른 실증단지의 온실가스배출량 분석)

  • Kim, Tae-Hoon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.643-658
    • /
    • 2015
  • This study presents detailed emission of greenhouse gases of using Clean Energy Agriculture System according to a cradle-to-gate life-cycle assessment, including emission from energy use and leak of Biogas. Calculations were done with the PASS software and the covered gases are $CH_4$, $N_2O$ and $CO_2$, Total GHG fluxes of amount to $1719.03kgCO_2/day$, $39.63kgCO_2/day$ (2.31%) are from facility house process, $0.19kgCO_2/day$ (0.01%) are from transport process, $696.72kgCO_2/day$ (40.53%) are from Anaerobic digestion process, $846.61kgCO_2/day$ (49.25%) are from Heating and cooling system, $135.88kgCO_2/day$ (7.90%) are from Fertigation production process. The results suggest that for effective reduction of GHG emissions from Facility house using clean energy. Reduction targets should address both the production process as defined by IPCC sectors and the consumption process. An LCA assessment as presented here could be a basis for such efforts.

Sensitivity Analysis and Parameter Estimation of Activated Sludge Model Using Weighted Effluent Quality Index (가중유출수질지표를 이용한 활성오니공정모델의 민감도 분석과 매개변수 보정)

  • Lee, Won-Young;Kim, Min-Han;Kim, Young-Whang;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1174-1179
    • /
    • 2008
  • Many modeling and calibration methods have been developed to analyze and design the biological wastewater treatment process. For the systematic use of activated sludge model (ASM) in a real treatment process, a most important step in this usage is a calibration which can find a key parameter set of ASM, which depends on the microorganism communities and the process conditions of the plants. In this paper, a standardized calibration protocol of the ASM model is developed. First, a weighted effluent quality index(WEQI) is suggested far a calibration protocol. Second, the most sensitive parameter set is determined by a sensitive analysis based on WEQI and then a parameter optimization method are used for a systematic calibration of key parameters. The proposed method is applied to a calibration problems of the single carbon removal process. The results of the sensitivity analysis and parameter estimation based on a WEQI shows a quite reasonable parameter set and precisely estimated parameters, which can improve the quality and the efficiency of the modeling and the prediction of ASM model. Moreover, it can be used for a calibration scheme of other biological processes, such as sequence batch reactor, anaerobic digestion process with a dedicated methodology.

Effect of Effluent Recirculation and Internal Return on the Performance of UASB Process (유출수 재순환 및 내부반송이 UASB 반응조 운전효율에 미치는 영향)

  • Kim, Jin-Hyok;Han, Seong-Kuk;Kwon, Oh-Hoon;Yoon, Kyung-Jin;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2011
  • Dumping of wastes at sea will be strongly prohibited from 2012 by London Dumping Convention. So, finding the method for treatment of food waste at ground is needed urgently. The solution for above mentioned problem is the resource development from food waste leachate by using Upflow Anaerobic Sludge Blanket (UASB) process. In this research, we try to find out the effect of effluent recirculation and internal return influence on organic removal efficiency and biogas production. Laboratory investigation was conducted for 25 days with only internal recycling, and then, effluent recirculation was performed. As the result of experiments, the organic removal efficiency was above 90%, and the content of methane was 78~80% during operating time. Also, when UASB reactor was operated to over the 3 Q effluent recirculation, there was not 1 N-NaOH consumption any more, therethrough the experiment was economically and stably carried out.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Application Amount of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용적량 구명)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Lee, Sang-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2002
  • This study was carried out to evaluate the proper application amount of anaerobic digestion waste water and the environmental influence on rice. The waste water collected after methane fermentation process of pig manure was used as a liquid manure. Liquid manure 100%+chemical fertilizer 30%(LM 100%+CF 30) treatment was the most favorable at all growth stages of rice. The LM 100%+CF 30% treatment was applied to 100% amount of liquid manure which was correspond to the same amount of nitrogen for the standard application amount on rice, with adding 30% amount of chemical fertilizer(urea) at tillering stage. The yields of rice in the treatments of 100%(LM 100%) and 150% amount(LM 150%) of liquid manure were similar or a little higher than NPK treatment but LM 100%+CF 30% treatment was less than the NPK treatment due to the increase of straw weight and plant lodging. In periodic changes of the $NH_4-N$ and $NO_3-N$ contents, the LM 70%+CF 30% treatment in paddy soil was the highest in all treatments. The NPK and the LM 100% treatments in irrigation water quality were higher than other treatments. In infiltration water quality, $NH_4-N$ content was leached out much in the LM 150% treatment and $NO_3-N$ content was in the LM 100%+CF 30% treatment. The proper application amount of anaerobic digestion waste water as a liquid manure must be to analyse the nitrogen content of the waste water and to apply the same amount of nitrogen for the standard application amount on rice.

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF