• Title/Summary/Keyword: anaerobe microorganism

Search Result 5, Processing Time 0.018 seconds

Effect of Sub-Minimal Inhibitory Concentration Antibiotics on Morphology of Periodontal Pathogens

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Minimal inhibitory concentration (MIC) is the lowest concentration of antibiotics that inhibits the visible growth of a microorganism. It has been reported that sub-MIC of antibiotics may result in morphological alterations along with biochemical and physiological changes in bacteria. The purpose of this study was to examine morphological changes of periodontal pathogens after treatment with sub-MIC antibiotics. Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis were used in this study. The MIC for amoxicillin, doxycycline, metronidazole, penicillin, and tetracycline were determined by broth dilution method. The bacterial morphology was observed with bright field microscope after incubating with sub-MIC antibiotics. The length of A. actinomycetemcomitans and F. nucleatum were increased after incubation with metronidazole; penicillin and amoxicillin. P. gingivalis were increased after incubating with metronidazole and penicillin. However, F. nucleatum showed decreased length after incubation with doxycycline and tetracycline. In this study, we observed that sub-MIC antibiotics can affect the morphology of periodontal pathogens.

Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil I. Screening and identification of anaerobic bacteria (국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 I. 혐기성 세균의 선별과 동정)

  • Park, Seung-chun;Yun, Hyo-in;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.53-60
    • /
    • 1993
  • Anaerobic bacteria are suggested to be potential source for new antibiotics. In order to search for antibiotics from domestic origin, we collected 800 soil samples across Korean locations and could isolate as many as 989 anaerobic strains. Among them 10, strains were found to have good producing capacity of antibiotics. An anaerobe was finally selected due to secreting antibiotics having high antimicrobial activity towards multiple resistant microorganism(E coli JM 83) transformed by genetic engineering technique. Its morphological, physiological and biochemical charateristics were investigated, together with antimicrobial spectrum therefrom. On antimicrobial spectrum study, substance secreted from this strain, had no activities to fungus and yeast. The selected strain showed G(+) and coccal shape, on Gram, staining and electron scanning microscopy, respectively. Biochemically this strain utilized glucose, fructose lactose, sucrose, but did not arabinose, cellulose, rhamnose, sorbitol, trehalose, mannitol. Catalase test showed negative property. Optimal growth temperature was $37^{\circ}C$. The results obtained above suggest this strain Streptococcus faecium subspp. and we named it Streptococcus sp. An-21-1.

  • PDF

The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes (Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화)

  • Kim, Kyu-Ho;Choi, Young-Jin;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2008
  • Hydrogen is considered as an energy source for the future due to its environmentally friendly use in fuel cells. A promising way is the biological production of hydrogen by fermentation. In this study, the optimization of medium conditions which maximize hydrogen production from Enterobacter aerogenes KCCM 40146 were determined. As a result, the maximum attainable cumulative volume of hydrogen was 431 $m{\ell}$ under the conditions of 0.5M potassium phosphate buffer, pH 6.5 medium containing 30 g/L glucose. The best nitrogen sources were peptone and tryptone for the cell growth as well as hydrogen production. The control of cell growth rate was found to be a important experimental parameter for effective hydrogen production

Characterization of Miniimonas sp. S16 isolated from activated sludge (활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성)

  • Koh, Hyeon-Woo;Kim, Hongik;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.242-247
    • /
    • 2019
  • Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

Microflora and enzyme activity of conventional Meju, and isolation of useful mould (재래식 메주의 미생물군, 효소역가 및 유용 균주의 분리)

  • Choi, Seong Hyun;Lee, Mi Hyun;Lee, Seuk Keun;Oh, Man Jin
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.188-196
    • /
    • 1995
  • To obtain useful mould strain in soybean fermentation industry, we collected conventional Meju all over the Korea and tested existance of aflatoxin in Meju collected. Also, we measured distribution of microorganism and enzyme activity of Meju and isolated Aspergillus oryzae O4-5 as a industrially useful mould. The results obtained were summarized as follows: 1. Aflatoxin was not detected by EZ-Screen Test Kit and HPLC analysis in various Meju sample collected all over the Korea from 1994.12 to 1995.2. 2. Colony forming units(CFU) of mould, yeasts, aerobe, and anaerobe were $1.3{\times}10^4-2.8{\times}10^6$, $1{\times}10^2-1.5{\times}0^6$, $2.0{\times}10^7-8.0{\times}10^8$ and $3.0{\times}10^6-7.3{\times}10^8$ per gram of Meju, respectively, indicating that CFU inter Meju samples were varied with big difference. 3. The activities of ${\alpha}$-amylase and gluco-amylase were 5-80 units and 2-34 units per g of Meju, respectively. It was shown that enzyme activity was varied depending on where the Meju was collected. 4. The activities of acidic, neutral and alkaline protease were 5-33 units, 5-302 units and 5-363 units per g of Meju, respectively. Acidic protease of Improved Meju made by D-Company was higher than that of conventional Meju as 66 units per g of Meju. 5. CNU O4-5 strain selected as a noble strain could produce amylase and protease in high level, and identified as a strain that belongs to Aspergillus oryzae. 6. The activities of acidic and neutral protease of Aspergillus oryzae CNU O4-5 strain isolated were about 10% higher than those of Aspergillus oryzae JM which has been used in soybean fermentation industry. Amylase activity of CNU O4-5 strain was similar to Aspergillus oryzae JM.

  • PDF