• Title/Summary/Keyword: an algebraic approach

Search Result 105, Processing Time 0.02 seconds

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Representation and Implementation of Graph Algorithms based on Relational Database (관계형 데이타베이스에 기반한 그래프 알고리즘의 표현과 구현)

  • Park, Hyu-Chan
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.347-357
    • /
    • 2002
  • Graphs have provided a powerful methodology to solve a lot of real-world problems, and therefore there have been many proposals on the graph representations and algorithms. But, because most of them considered only memory-based graphs, there are still difficulties to apply them to large-scale problems. To cope with the difficulties, this paper proposes a graph representation and graph algorithms based on the well-developed relational database theory. Graphs are represented in the form of relations which can be visualized as relational tables. Each vertex and edge of a graph is represented as a tuple in the tables. Graph algorithms are also defined in terms of relational algebraic operations such as projection, selection, and join. They can be implemented with the database language such as SQL. We also developed a library of basic graph operations for the management of graphs and the development of graph applications. This database approach provides an efficient methodology to deal with very large- scale graphs, and the graph library supports the development of graph applications. Furthermore, it has many advantages such as the concurrent graph sharing among users by virtue of the capability of database.

Convergence of Nonlocal Integral Operator in Peridynamics (비국부 적분 연산기로 표현되는 페리다이나믹 방정식의 수렴성)

  • Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.151-157
    • /
    • 2021
  • This paper is devoted to a convergence study of the nonlocal integral operator in peridynamics. The implicit formulation can be an efficient approach to obtain the static/quasi-static solution of crack propagation problems. Implicit methods require constly large-matrix operations. Therefore, convergence is important for improving computational efficiency. When the radial influence function is utilized in the nonlocal integral equation, the fractional Laplacian integral equation is obtained. It has been mathematically proved that the condition number of the system matrix is affected by the order of the radial influence function and nonlocal horizon size. We formulate the static crack problem with peridynamics and utilize Newton-Raphson methods with a preconditioned conjugate gradient scheme to solve this nonlinear stationary system. The convergence behavior and the computational time for solving the implicit algebraic system have been studied with respect to the order of the radial influence function and nonlocal horizon size.

Cryptanalysis of LILI-128 with Overdefined Systems of Equations (과포화(Overdefined) 연립방정식을 이용한 LILI-128 스트림 암호에 대한 분석)

  • 문덕재;홍석희;이상진;임종인;은희천
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper we demonstrate a cryptanalysis of the stream cipher LILI-128. Our approach to analysis on LILI-128 is to solve an overdefined system of multivariate equations. The LILI-128 keystream generato $r^{[8]}$ is a LFSR-based synchronous stream cipher with 128 bit key. This cipher consists of two parts, “CLOCK CONTROL”, pan and “DATA GENERATION”, part. We focus on the “DATA GENERATION”part. This part uses the function $f_d$. that satisfies the third order of correlation immunity, high nonlinearity and balancedness. But, this function does not have highly nonlinear order(i.e. high degree in its algebraic normal form). We use this property of the function $f_d$. We reduced the problem of recovering the secret key of LILI-128 to the problem of solving a largely overdefined system of multivariate equations of degree K=6. In our best version of the XL-based cryptanalysis we have the parameter D=7. Our fastest cryptanalysis of LILI-128 requires $2^{110.7}$ CPU clocks. This complexity can be achieved using only $2^{26.3}$ keystream bits.

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF