• Title/Summary/Keyword: an advanced chemical solution synthesis

Search Result 34, Processing Time 0.033 seconds

Soft Solution Processing : Low-Energy Direct Fabrication of Advanced Inorganic Materials

  • Masahiro Yoshimura;한규승;Wojciech Suchanek
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.875-878
    • /
    • 1999
  • A new concept ??soft solution processing?? has been introduced to fabricate advanced solid state materials in an economical, environmentally friendly, and energy and material efficient way. The prepared films show the desired and prospective properties despite of low temperature synthesis and no post-synthesis annealing. Successful examples demonstrate that soft solution processing is capable of preparing advanced materials with planned properties through the easy control of reaction conditions in a suitable aqueous solution in a single synthetic step without huge energy consumption and without any sophisticated equipment.

Nanoparticles Synthesis and Modification using Solution Plasma Process

  • Mun, Mu Kyeom;Lee, Won Oh;Park, Jin Woo;Kim, Doo San;Yeom, Geun Young;Kim, Dong Woo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.164-173
    • /
    • 2017
  • Across the most industry, the demand for nanoparticles is increasing. Therefore, many studies have been carried out to synthesize nanoparticles using various methods. The aim of this paper is to introduce an industry-applicable as well as financially and environmentally effective solution plasma process. The solution plasma process involves fewer chemicals than the traditional kit, and can be used to replace many of the chemical agents employed in previous synthesis of nanoparticles into plasma. In this study, this process is compared to the wet-reaction process that has thus far been widely used in the most industry. Furthermore, the solution plasma process has been classified into four different types (in-solution, out of solution, direct type, and remote type), according to its plasma occurrence position and plasma types. Thus, the source of radicals, nanoparticle synthesis, and modification methods are explained for each design. Lastly, unlike nanoparticles with hydrophilic functional groups that are made inside the solution, a nanoparticle synthesis and modification method to create a hydrophobic functional group is also proposed.

Luminescent properties of a new yellow phosphor $CaBaSiS_4:Eu^{2+}$ synthesized by an advanced chemical solution method

  • Ohara, Keishiro;Petrykin, Valery;Tezuka, Satoko;Kakihana, Masato
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1274-1275
    • /
    • 2009
  • We report on preparation of $CaBaSiS_4:Eu^{2+}$ material by an advanced chemical solution method and fluorescent properties of the new material. The emission spectrum of $CaBaSiS_4:Eu^{2+}$ has the main peak centered at 598 nm, with the corresponding excitation maximum at around 420 nm. The strongest emission intensity of this material approached 96% compared to one of the best commercially available YAG:$Ce^{3+}$ phosphor.

  • PDF

Synthesis and Characterization of Dendritic Nonlinear Optical Chromophore Containing Phenylene Attached with Bulky Alkyl Group

  • Choi, Jin-Joo;Kim, Kyoung-Mahn;Lim, Jong-Sun;Lee, Chang-Jin;Kim, Dong-Wook
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2007
  • Star-shaped, nonlinear optical (NLO) material was synthesized and its optical, thermal, and electro-optic properties were investigated. Three NLO-active dipolar chromophores containing a phenylene ring substituted with a bulky alkyl chain as a conjugation bridge were chemically bonded to the core of 1,1,1-tris(4-hydroxyphenyl)ethane to form a dendritic architecture. The chemical structure and purity of the chromophore were verified by NMR spectroscopy. The chromophore exhibited a broad absorption band centered at around 608 nm tailing up to 760 nm in toluene solution and also showed a discernible solvatochromic shift in more polar solvent. The chloroform solution of the dendrimer produced an absorption band with a red-shifted maximum as large as 28 nm when compared to that of the toluene solution. It was thermally stable up to $275^{\circ}C$ in a nitrogen atmosphere and had a glass transition temperature of $76^{\circ}C$. In a preliminary result, the polymer film containing the dendritic compound exhibited a shift of 19 pm/V taken at $1.55{\mu}$.

The Synthesis of a High Yield PbSe Quantum Dots by Hot Solution Method

  • Baek, In-Chan;Seok, Sang-Il;Chung, Yong-Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1729-1731
    • /
    • 2008
  • Colloidal solutions of crystalline PbSe nanoparticles have been synthesized by hot solution chemical process using PbO in oleic acid and tributylphosphine (TBP) bonded selenium. The use of TBP as a capping agent along with oleic acid gives a very good yield (around 10% at 180 ${^{\circ}C}$) with an average diameter of particle of about < 6.6 nm. The effects of temperature on size and production yield of PbSe quantum dots are studied. Xray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and UV/VIS/NIR absorption spectroscopy were used to characterize the samples.

Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency

  • Park, Jeong-Won;Jung, Yong-Won;Jung, Young-Hwan;Seo, Jeong-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1667-1670
    • /
    • 2004
  • In DNA microarray produced by DNA-deposition technology, DNA-immobilization and -hybridization yields on a solid support are most important factors for its accuracy and sensitivity. We have developed a dendrimeric support using silylated aldehyde slides and polyamidoamine (PAMAM) dendrimers. An oligonucleotide array was prepared through a crosslinking between the dendrimeric support and an oligonucleotide. Both DNAimmobilization and -hybridization yields on the solid support increased by the modification with the dendrimers. The increase of the immobilization and hybridization efficiency seems to result from a threedimensional arrangement of the attached oligonucleotide. Therefore, our dendrimeric support may provide a simple and efficient solution to the preparation of DNA microarrays with high-density DNA-deposition and high hybridization efficiency.

Characteristics of Spodumene Powders Synthesized by Polyvinyl Alcohol Solution Technique (Polyvinyl Alcohol 폴리머 용액법으로 합성한 스포듀민 분말의 특성연구)

  • Lee, Sang-Jin;Park, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • LAS-system ceramic powder, spodumene ($Li_2O{\cdot}Al_2O_3{\cdot}4SiO_2$), was successfully synthesized by a chemical solution technique employing PVA(polyvinyl alcohol) as an organic carrier. The PVA content affected the microstructure of porous precursor gels and the crystalline development. The optimum PVA content contributed to homogeneous distribution of metal ions in the precursor gel and it resulted in the synthesis of glass free $\beta$-spodumene powder having a specific surface area of $7.57\;m^2/g$. The agglomerated $\beta$-spodumene powders were also enough soft to grind to fine powders by a simple ball milling process. The microstructures of the densified powder compacts were strongly dependant on the minor phases of spodumene solid solution and amount of liquid phase, which were formed from the inhomogeneous precursors.

Synthesis and Luminescence Properties of a Cyan-blue Thiosilicate-based Phosphor $SrSi_2S_5:Eu^{2+}$

  • Nakamuraa, Masayoshi;Katoa, Hideki;Takatsuka, Yuji;Petrykinc, Valery;Tezuka, Satoko;Kakihana, Masato
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.135-139
    • /
    • 2010
  • A series of Sr-Si-S compounds was synthesized using an advanced chemical method in which the use of one solution-based process uniformly dispersed the $Eu^{2+}$ activators in the host crystals, to find new compositions that would suit phosphor applications. Particular focus was given to the Si-rich region. This led to the synthesis of a single-phase compound that showed an unknown X-ray diffraction pattern. This compound had a composition close to that of $SrSi_2S_5$. When this compound is activated with $Eu^{2+}$ ($SrSi_2S_5:Eu^{2+}$), it shows a cyan-blue emission with a main luminescence peak at 495 nm. This emission is excited by wavelengths of 250-440 nm and has a maximum excitation at 350 nm.

Synthesis and Characterization of N,O-Carboxymethylchitosan Hydrogel Crosslinked by γ-ray Irradiation

  • Gwon, Hui-Jeong;Lim, Youn-Mook;An, Sung-Jun;Youn, Min-Ho;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • In order to develop a water-solubility and biocompatibility, chemically modified chitosan, N,O-carboxymethylchitosan (NOCC), was synthesized and the NOCC hydrogels were prepared by using ${\gamma}-ray$ irradiation instead of chemical reagents. The FT-IR spectroscopy, swelling behavior, gel content and mechanical property such as gel strength of the hydrogel were measured. When the NOCC solution concentration was 15 wt% and the dose of irradiation was less than 50 kGy, the NOCC hydrogels had an excellent hydrophilicity and exhibited a good swelling behavior and mechanical properties.

Synthesis of size-controlled ZnO tetrapods sizes using atmospheric microwave plasma system and evaluation of its photocatalytic property (대기압 마이크로웨이브 플라즈마를 이용한 다양한 크기의 ZnO tetrapod 합성 및 광촉매 특성 평가)

  • Heo, Sung-Gyu;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.340-347
    • /
    • 2021
  • Among various metal oxide semiconductors, ZnO has an excellent electrical, optical properties with a wide bandgap of 3.3 eV. It can be applied as a photocatalytic material due to its high absorption rate along with physical and chemical stability to UV light. In addition, it is important to control the morphology of ZnO because the size and shape of the ZnO make difference in physical properties. In this paper, we demonstrate synthesis of size-controlled ZnO tetrapods using an atmospheric pressure plasma system. A micro-sized Zn spherical powder was continuously introduced in the plume of the atmospheric plasma jet ignited with mixture of oxygen and nitrogen. The effect of plasma power and collection sites on ZnO nanostructure was investigated. After the plasma discharge for 10 min, the produced materials deposited inside the 60-cm-long quartz tube were obtained with respect to the distance from the plume. According to the SEM analysis, all the synthesized nanoparticles were found to be ZnO tetrapods ranging from 100 to 600-nm-diameter depending on both applied power and collection site. The photocatalytic efficiency was evaluated by color change of methylene blue solution using UV-Vis spectroscopy. The photocatalytic activity increased with the increase of (101) and (100) plane in ZnO tetrapods, which is caused by enhanced chemical effects of plasma process.