• Title/Summary/Keyword: amylopectin cluster

Search Result 6, Processing Time 0.026 seconds

Enzymatic Production of Amylopectin Cluster Using Cyclodextrin Glucanotransferase (Cyclodextrin Glucanotransferase를 이용한 아밀로펙틴 클러스터의 생산)

  • Lee, Hye-Won;Jeon, Hye-Yeon;Choi, Hyejeong;Shim, Jae-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1388-1393
    • /
    • 2014
  • To enzymatically prepare amylopectin cluster (APC), cyclodextrin glucanotransferase (CGTase I-5) and its mutant enzyme from alkalophilic Bacillus sp. I-5 were employed, after which the hydrolysis patterns of CGTase wild-type and its mutant enzyme toward amylopectin were investigated using multi-angle laser light scattering. CGTase wild-type dramatically reduced the molecular weight of waxy rice starch at the initial reaction, whereas the mutant enzyme degraded waxy rice starch relatively slowly. Based on the results, the molecular weight of one cluster of amylopectin could be about $10^4{\sim}10^5g/mol$. To determine production of cyclic glucans from amylopectin, matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed. CGTase I-5 produced various types of cyclic maltooligosaccharides from amylopectin, whereas the mutant enzyme hardly produced any.

Physicochemical Characteristics of Starches in Rice Cultivars of Diverse Amylose Contents

  • Yoon, Mi-Ra;Chun, A-Reum;Oh, Sea-Kwan;Hong, Ha-Cheol;Choi, Im-Soo;Lee, Jeong-Heui;Cho, Young-Chan;Kim, Yeon-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.226-232
    • /
    • 2012
  • Through the sampling four rice cultivars with differing amylose contents, the relationship between the structural and gelatinization properties of endosperm starches was analyzed. These rice varieties exhibited different chain length distribution ratio within the amylopectin cluster as well as varing amylose levels. The proportion of amylopectin short chains of in Goami cutlivars was higher than the other varieties, whereas the Goami 2 which shows amylose extender mutant properties in the endosperm showed the highest proportion of long chains. In X-ray diffraction analysis of rice starches, the Goami 2 variety displayed a B-type pattern whereas the other varieties were all A-type. Among the cultivars with high and normal rice starch levels, those with the higher amylose contents showed distinctly lower swelling. Goami 2 rice was found to have the highest onset and peak gelatinization temperature from the differential scanning calorimetry results. The four rice cultivars under analysis also showed different rates of hydrolysis by amyloglucosidase. These findings suggest that the composition and chemical structure of the starch content is a major determinant of both the gelatinization and functional properties of rice.

Classification of Rices on the Basis of Sensory Properties of Cooked Rices and the Physicochemical Properties of Rice Starches (취반미의 관능적 특성에 따른 쌀의 분류 및 쌀전분의 이화학적 특성)

  • Jang, Kyung-Ah;Shin, Myung-Gon;Hong, Sung-Hee;Min, Bong-Ki;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.44-52
    • /
    • 1996
  • Sensory properties of cooked rice were affected by the varieties and growing environments of the rice. Moistness, cohesiveness, and adhesiveness of cooked rice were highly and positively correlated each other, whereas firmness was negatively correlated with these attributes. Sixty rice samples which differed in varieties and/or growing environments were divided into four groups based on their textural properties through principal component analysis and cluster analysis. Quality type I showed the highest values for moistness, cohesiveness, and adhesiveness, and the lowest values for firmness of cooked rice. On the other hand, quality type IV showed just the opposite values. There was no significant difference among rice starches in amylose content (P<0.05). A17 (type III) and A09 (type IV) had higher blue values for starch and amylopectin than the other samples (type I and II). On the amylogram, these samples showed lower values for breakdown and higher values for setback than the other samples. Average degree of polymerization, average chain length, and average number of chains for amylose and amylopectin were 597-878 and 2660-3140, 140-230 and 17-19, and 3.1-4.9 and 140-170, respectively.

  • PDF

Disentangling Evolutionary Pattern and Haplotype Distribution of Starch Synthase III-1 (SSIIIb) in Korean Rice Collection

  • Bhagwat Nawade ;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.214-214
    • /
    • 2022
  • Soluble starch synthases (SSs) elongate α-glucans from ADP-Glc to the glucan nonreducing ends and play a critical role in synthesizing resistant starch in the rice. A total of 10 SSs isoforms were reported in rice, including granules-bound starch synthase I (GBSSI), GBSSII, starch synthase I (SSI), SSIIa (SSII-3), SSIIb (SSII-2), SSIIc (SSII-1), SSIIIa (SSIII-2), SSIIIb (SSIII-1), SSIVa (SSIV-1), and SSIVb (SSIV-2). SSIII proteins are involved in forming the B chain and elongating cluster filling chains in amylopectin metabolism. The functions of SSIIIb (SSIII-1) are less clear as compared to SSs. Here, we sought to shed light on the genetic diversity profiling of the SSIII-1 gene in 374 rice accessions composed of 54 wild-type accessions and 320 bred cultivars (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture). In total, 17 haplotypes were identified in the SSIII-1 coding region of 320 bred cultivars, while 44 haplotypes were detected from 54 wild-type accessions. The genetic diversity indices revealed the most negative Tajima's D value in the temperate-japonica, followed by the wild type, while Tajima's D values in other ecotypes were positive, indicating balancing selection. Nucleotide diversity in the SSIII-1 region was highest in the wild group (0.0047) while lowest in temperate-japonica. Lower nucleotide diversity in the temperate-japonica is evidenced by the negative Tajima's D and suggested purifying selection. The fixation index (FST) revealed a very high level of gene flow (low FST) between the tropical-japonica and admixture groups (FST=-0.21) followed by admixture and wild groups (-0.04), indica and admixture groups (0.02), while low gene flow with higher FST estimates between the temperate-japonica and aus groups (0.72), tropical-japonica and aromatic groups (0.71), and temperate-japonica and admixture groups (0.52). Taken together, our study offers insights into haplotype diversity and evolutionary fingerprints of SSIII-1. It provides genomic information to increase the resistant starch content of cooked rice.

  • PDF

SSR Marker Related to Major Characteristics Affected Kernel Quality in Waxy Corn Inbred Lines (찰옥수수 자식계통의 주요 품질특성과 관련된 SSR마커)

  • Jung, Tae-Wook;Moon, Hyeon-Gui;Son, Beom-Young;Kim, Sun-Lim;Kim, Soon-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.185-192
    • /
    • 2006
  • This experiment was conducted to assess genetic diversity of waxy corn inbred lines and to identify SSR markers related to major characteristics affected kernel quality for improving waxy corn $F_1$ hybrid with good quality. Diversity of 64 waxy com inbred lines was evaluated using 30 microsatellite markers. The 30 microsatellite markers representing 30 loci in the maize genome detected polymorphisms among the 64 inbred lines and revealed 225 alleles with a mean of 7.5 alleles per primer. The polymorphism Information content (PIC) value ranged from 0.14 to 0.87, with an average of 0.69. Based on Nei's genetic distances, the 64 inbred lines were classified into 9 groups by the cluster analysis. The group I included 26 inbred lines (41%), other groups included 3 to 9 inbred lines. One-way analysis of variance was conducted to identify significant relationship between individual markers and major characteristics that affect kernel quality. The analysis showed that umc1019 was related to amylopectin and crude protein content, me 1020 to amylopectin content and peak viscosity, and bnlg1537 to 100-kernel weight, kernel length, and kernel width.

Major Characteristics Related on Eating Quality and Classification of Inbred Lines of Waxy Corn (찰옥수수 자식계통 식미관련 특성 및 계통 분류)

  • Jung Tae-Wook;Kim Sun-Lim;Moon Hyeon-Gui;Son Beom-Young;Kim Si Ju;Kim Soon Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.161-166
    • /
    • 2005
  • Objectives of this study were to select inbred lines which have a good eating quality and desirable segregates during inbreeding of waxy corn. The 64 inbred lines showed a large variance in their kernel shape and weight. 100-kernel weight, pericarp thickness, kernel length, kernel width, and kernel thickness ranged $11.7\~37.3g,\;11\~77{\mu}m,\;5.8\~9.6mm,\;6.5\~10.0mm$, and $4.1\~6.8mm$, respectively. The physicochemical analysis of 64 waxy corn inbred lines showed crude protein, crude fat, free sugar, and amylopectin content ranging $8.7\~15.8\%,\;2.3\~5.8\%,\;1.1\~11.0\%,\;and\;78.5\~93.8\%$, respectively. The texture property analysis of 64 inbred lines by texture analyzer showed a big difference. Gumminess, hardness, and chewiness of 64 inbred lines ranged $91\~383,\;181\~394,\;and\;73\~370$, respectively. The principal component analysis for 14 characteristics related to kernel quality showed that $73.1\%$ of the total variation could be attributed to the first five principal components. Biological meaning of the principal component was explained clearly by the correlation coefficient between principal components and characters. The first principal component appeared to correspond to small kernel and bad eating quality, The second principal component appeared to correspond to large kernel and good eating quality. The 64 inbred lines were classified into 8 groups by the cluster analysis using the first and second principal component. Among the groups, group VII and VIII included inbred lines with good eating quality that had thin pericarp thickness, low protein content, large kernel, and soft tenderness.