• 제목/요약/키워드: amylolytic enzymes

검색결과 29건 처리시간 0.027초

고구마 전분에 대한 고구마 조효소와 전분분해 효소의 작용에 관하여 (Action of Crude Amylolytic Enzymes Extracted from Sweet Potatoes and Amylolytic Enzymes on the Sweet Potato Starches)

  • 신말식;안승요
    • 한국식품과학회지
    • /
    • 제18권6호
    • /
    • pp.431-436
    • /
    • 1986
  • 분질고구마인 원기와 점질고구마인 천미로부터 얻은 전분에 각 고구마에서 추출된 조효소와 분가수분해효소를 작용시켜 비교 검토한 결과는 다음과 같았다. 천미보다 원기에서 추출한 조효소의 전분가수분해활성이 높았으며 각 전분의 호화온도에 따른 조효소의작용으로 생성된 환원당 함량은 $70^{\circ}C$에서는 천미전분을 기질로 한 것이, $95^{\circ}C$에서는 원기 전분을 기질로 한 것이 더 높았다. 원기 전분에 대한 ${\alpha}-amylase$${\beta}-amylase$ 활성은 천미전분에 대한 것보다 높았다. 효소처리 전분의 요드 반응 후의 흡광도는 생전분보다 낮았으며, 형태는 표면에서 내부로 여러 층을 갖는 구멍이 있고 둥근형이었다. 각 전분의 X-선 회절양상을 관찰한 결과 본 실험에 사용된 고구마 전분은 효소처리 후에도 생전분과 같이 Ca 형을 유지하였으며 상대적 결정도는 효소처리전분이 생전분보다 낮았다.

  • PDF

고도 호열성 Archaebacterium Thermococcus profundus가 생산하는 Amylolytic Enzymes (Amylolytic Enzymes Produced from Hyperthermophilic Archaebactorium Thermococcus profundus)

  • 정영철;김경숙;노승환
    • 한국식품영양학회지
    • /
    • 제7권4호
    • /
    • pp.259-266
    • /
    • 1994
  • The hyperthermophilic archaebacterium Thermococcus profundus Isolated from a deep-sea hydrothermal vent system, produced several amylolytic enzymes such as extracellular amylase and pullulanase, intracellular a-1,4-91ucosidase in respone to the presence of complex carbohydrates In the growth medium. This strain showed high activities on 0.5% maltose than on complex carbohydrates One of the amylases was partially purified by ammonium sulfate precipitation, DEAE-Toyopearl chromatography. The amylase exhibited maximal activity at pH 5.5 and 80$^{\circ}C$, and was stable in the range of pH 5.5 to 9.5 and up to 80$^{\circ}C$ for 30 min. The enzyme activity was no dependence on Ca2+ and not inhibited by detergents. The amylase hydrolyzed soluble starch, amylose, amylopectin and glycogen to produce maltose and maltotriose with trace amounts of glucose, but not pullulan and ${\alpha}$-, ${\beta}$-, ${\gamma}$-cyclodextrin. Malto-oligosaccharides ranging from maltotetraose to maltoheptaose were hydrolyzed in an endo fashion.

  • PDF

Selective Isolation and Characterization of Schwanniomyces castellii Mutants with Increased Production of a-Amylase and Glucoamylase

  • Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권2호
    • /
    • pp.95-98
    • /
    • 1993
  • This study was carried out to isolate and characterize the mutant strains of Schwanniomyces castellii NRRL Y-2477. Mutants were prepared with the treatment of ethyl methane sulfonate. 2-deoxy-D-glucose resistant mutants were isolated and two mutants were selected based on their high production of amylolytic enzymes and their ability to ferment starch. The mutants selected had higher a-amylase and glucoamylase activities than the wild type strain from several other carbon sources. Especially, it was revealed that mutant strain M-9, when cultured in the presence of glucose as a sole carbon source, shows relatively high activities of a-amylase and glucoamylase compared to those of the wild type strain. In result, this mutant strain can be considered as a constitutive producer of amylolytic enzymes. To compare the ethanol production ability of wild type strain and of mutant strains selected, an alcohol fermentation was carried out using 100 g/l soluble starch. Mutant strain M-9 did not improve the direct alcohol fermentation of starch, despite its excellent amylolytic activities performance. On the other hand, mutant strain M-6 produced 37.9 g/l (4.8%, v/v) ethanol by utilizing about 82% of substrate.

  • PDF

과요오드산 산화전분 변형에 의한 아밀라아제의 안정화 (Stabilization of Amylolytic Enzymes by Modification with Periodate-Oxidized Soluble Starch)

  • 안용근
    • 한국식품영양학회지
    • /
    • 제11권5호
    • /
    • pp.561-564
    • /
    • 1998
  • The stabilizatio of amaylolytic enzyme such as $\beta$-amylase of barley, $\beta$-amylase of wheat, $\beta$-amylase of sweet potato, $\alpha$-amylase of Bacillus licheniformis, $\alpha$-amylase of Aspergillus sp. and $\alpha$-glucosidase of Aspergillus awamori was attained by modification with periodate-oxidized soluble starch. The pH stability of modified enzyme was increased at pH 9 for $\beta$-amylase of sweet potato, pH 3~5 and 8~11 for $\beta$-amylase of barley, pH 2~3 and 7~12 for $\beta$-amylase of wheat and pH 6 for $\alpha$-glucosidase of Aspergillus awamori. Thermal stability increased 17.6% for $\alpha$-amylase of Aspergillus sp. at 6$0^{\circ}C$ for 10min, 30% for $\alpha$-amylase of Bacillus licheniformis at 10$0^{\circ}C$ for 5min and 4.5% for $\alpha$-amylase of sweet potato at 6$0^{\circ}C$ for 10min compared with those of native enzymes.

  • PDF

전통식혜제조 - 제 1보 엿기름과 효소를 이용한 제조 (Preparation of Traditional Malt-Sikhye 1. Preparation by Malt and Amyolytic Enzymes)

  • 안용근
    • 한국식품영양학회지
    • /
    • 제12권2호
    • /
    • pp.164-169
    • /
    • 1999
  • To develope the scientific preparation method of Dorean traditional rice drink 'Sikhye', effect of malt and commercial amylolytic enzymes in preparation of malt-Sikhye were studied. amylase activity of malt used in this study was 9,725unit/g. In malt-Sikhye preparation effective saccharifying conditions were 4% of malt 20% of rice at 6$0^{\circ}C$ for 5hour. Commercial amylolytic enzymes such as $\beta$-amylase(Bio-zyme ML Himaltosin GL) $\alpha$-amylase(Bokhabhyoso 5000, Teramyl and Fungamyl) and pulluanase(en-zyme CK-20) were not effective in saccharification for Sikhye preperation.

  • PDF

전분 분해효소 첨가와 종이봉지를 이용한 식혜의 제조 방법 (Preparation of Shikhae with Starch Hydrolysing Enzymes/Malt Mixture in Tea-bag)

  • 육철;황윤희;백운화;박관화
    • 한국식품과학회지
    • /
    • 제22권3호
    • /
    • pp.296-299
    • /
    • 1990
  • 제조방법이 간편하고 감미도가 높은 새로운 식혜 제조 방법을 개발하였다. 역가가 높은 엿기름만을 분획하여 Tea-bag$(16{\times}20cm)$에 넣어 엿기름 추출공정을 간편하게 하였으며 여기에 ${\alpha}-amylase$, glucoamylase, glucoisomerase를 첨가하여 쌀 전분의 분해를 촉진시켜 단맛이 강한 단당류로 분해되도록 하였다. 식혜의 제조는 엿기름과 효소를 넣은 Tea-bag을 물로 추출한 후 여기에 고두밥을 넣어 당화시켰다. 재래식 방법에 의하여 만든 식혜의 당 조성은 fructose 1.8%, glucose 7.5%, maltose 49.5%, DP3 8.6% 그리고 DP4 이상이 32.5%이었으나 본 연구에서 개발된 방법에 의하여 제조한 식혜는 fructose 6.7%, glucose 89.0%, maltose 1.9%, DP3 0.9% 그리고 DP4 이상이 1.6%로 나타나 쌀 전분의 대부분이 단당류로 분해가 되어 설탕 첨가없이도 감미가 높은 식혜를 제조할 수 있었다.

  • PDF

알팔파 예취후 재생시 비구조탄수화물 함량 및 전분 분해 효소활력의 변화 (Changes in Non-Structural Carbohydrate Contents and Amylolytic Enzymes Activities during Regrowth after Cutting in Medicago sativa L.)

  • 김태환;김병호
    • 한국작물학회지
    • /
    • 제41권5호
    • /
    • pp.542-550
    • /
    • 1996
  • 알팔파 (Medicago sativa L.)의 예취후 재생 기간중 저장탄수화물의 이용성을 규명하기 위해 수경재배하여 개화초기에 예취한 후 재생 24일간의 뿌리내 비구조탄수화물의 함량 및 전분 분해효소의 활력을 분석한 결과는 아래와 같다. 1. 재생초기 10일간의 잎과 줄기의 재생은 매우 느리게 진행되었으며, 예취후 뿌리의 성장이 억제되었다. 2. 예취후 초기재생 10∼14일간 뿌리내 가용성 당 및 전분의 함량은 다같이 감소하였다가 이후 빠르게 회복하는 경향이었다. 3. 재생기간중 exo-amylase의 평균 활력은endo-amylase에 비해 약 400배 이상 높았다. Exo-amylase의 활력은 재생 6일차(최고수준) 까지 증가하다가 이후 감소하였다. Endo-amylase의 활력은 재생초기 4일 동안 급격히 증가하다가 이후 재생 24일차(최고수준) 까지 서서히 증가하는 경향이었다. 이상의 결과들은 알팔파의 재생초기 동안 전분 분해효소의 활력의 증가와 아울러 뿌리내 저장탄수화물은 활발히 분해되어 새로운 조직의 재생에 이 용됨을 간접적으로 제시한다.

  • PDF

Characterization of Amylolytic Activity by a Marine-Derived Yeast Sporidiobolus pararoseus PH-Gra1

  • Kwon, Yong Min;Choi, Hyun Seok;Lim, Ji Yeon;Jang, Hyeong Seok;Chung, Dawoon
    • Mycobiology
    • /
    • 제48권3호
    • /
    • pp.195-203
    • /
    • 2020
  • Marine yeasts have tremendous potential in industrial applications but have received less attention than terrestrial yeasts and marine filamentous fungi. In this study, we have screened marine yeasts for amylolytic activity and identified an amylase-producing strain PH-Gra1 isolated from sea algae. PH-Gra1 formed as a coral-red colony on yeast-peptone-dextrose (YPD) agar; the maximum radial growth was observed at 22 ℃, pH 6.5 without addition of NaCl to the media. Based on the morphology and phylogenetic analyses derived from sequences of internal transcribed spacer (ITS) and a D1/D2 domain of large subunit of ribosomal DNA, PH-Gra1 was designated Sporidiobolus pararoseus. S. pararoseus is frequently isolated from marine environments and known to produce lipids, carotenoids, and several enzymes. However, its amylolytic activity, particularly the optimum conditions for enzyme activity and stability, has not been previously characterized in detail. The extracellular crude enzyme of PH-Gra1 displayed its maximum amylolytic activity at 55 ℃, pH 6.5, and 0%-3.0% (w/v) NaCl under the tested conditions, and the activity increased with time over the 180-min incubation period. In addition, the crude enzyme hydrolyzed potato starch more actively than corn and wheat starch, and was stable at temperatures ranging from 15 ℃ to 45 ℃ for 2 h. This report provides a basis for additional studies of marine yeasts that will facilitate industrial applications.

Isolation of Amylolytic Bifidobacterium sp. Int-57 and Characterization of Amylase

  • Ji, Geun-Eog;Han, Hee-Kyung;Yun, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권2호
    • /
    • pp.85-91
    • /
    • 1992
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic microorganisms. The distribution of amylolytic microorganisms in the human large intestinal tract was investigated in various individuals of differing ages using anaerobic culture techniques. A large percentage of the amylolytic microorganisms present belonged to the Genus Bifidobacteria. The number of Bifidobacteria increased significantly at two years of age. Adults and children above 2 years old carried about $0.8{\times}10^9-2.0{\times}10^{10}$ colony forming units (CFU/gram) of amylolytic Bifidobacteria. Among these amylolytic Bifidobacteria, Int-57 was chosen for further studies. Between 65% and 85% of the amylase produced was secreted and the remaining amylase was bound to the cell wall facing the outside. Amylase production could be induced by starch in a stable form. When cells were grown on maltose or glucose, amylase production was much lower than on starch and amylase activity disappeared after 24 hours growth on these media. Partially purified enzymes showed optimum activity at a temperature of $50^{\circ}C$ and at an optimum pH of 5.5, respectively. Heat treatment at $70^{\circ}C$ for 30 minutes almost completely inactivated amylase. The hydrolysis products of starch were mainly maltose and maltotriose. Soluble starch, amylose, amylopectin, and $\gamma$-cyclodextrin($\gamma$-CD) were easily hydrolyzed. The rate of hydrolysis of $\alpha$-CD and $\beta$-CD was slower than that of $\gamma$-CD. Carboxymethyl cellulose, $\beta$-1, 3-glucan and inulin were not hydrolyzed.

  • PDF

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.