• Title/Summary/Keyword: amyloglucosidase

Search Result 36, Processing Time 0.043 seconds

Synthesis of Glycoside by Transglycosylation of Amyloglucosidase from Starch. (전분으로부터 Amyloglucosidase의 당전이반응에 의한 배당체의 합성)

  • 박종이;이희정;이태호
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.187-194
    • /
    • 1998
  • Glycosides were synthesized using transglycosylation reaction of amylase in water system. Starch as a glycosyl donor and benzylalcohol as an acceptor were selected as substrates of transglycosylation reaction. Among tested 9 commercial amylase, amyloglucosidase from Rhizopus sp. had high activity for transglycosylation from starch. The glycoside synthesized in water phase by amyloglucosidase was identified as benzylalcohol-${alpha}$-glucoside (BG) of which one molecule of benzylalcohol was bound to 1-OH of glucose. The transglycosylation reaction by amyloglucosidase were carried out in reaction system containing 50 mg starch, 50 mg benzylalcohol, and 10 units enzyme in pH 5.0 at 45$^{\circ}C$. The synthesized BG was hydrolyzed by ${alpha}$-glucosidase to produce glucose and benzylalcohol.

  • PDF

Production of Fructooligosaccharides by an Amyloglucosidase (Amyloglucosidase에 의한 Fructooligosaccharides의 생산)

  • 윤종원;이민규송승구
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.127-132
    • /
    • 1994
  • A new method of fructooligosaccharides production was investigated by an amyloglucosidase using sucrose as a substrate. Optimum reaction conditions were as follows: sucrose concentration, 700g/$\ell$; pH 5.5; temperature, $55^{\circ}C$; enzyme dosage, 48 units per gram sucrose. At the optimized reaction conditions, 41.5% of fructooligosaccharides were produced after 25 hours. A hydrolyzing activity was stronger than transfructosylting activity at low sucrose concentrations, resulting in low production rate of fructooligosaccharides. The optimum pH and temperature in both transfructosylating(pH 5.5, $60^{\circ}C$) and hydrolyzing activity(pH$4.75^{\circ}C$)were significantly different from each other. The amyloglucosidase also utilized fructooligosaccharides as a substrate and glucose seemed to be an inhibitor.

  • PDF

Ethanol Production from Sago Starch Using Zymomonas mobilis Coentrapped with Amyloglucosidase (동시고정화된 Amyloglucosidase와 Zymomonas mobilis를 이용한 전분으로부터의 Ethanol 생산)

  • Kim, Chul-Ho;Lee, Gyun-Min;Han, Moon-Hi;Rhee, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.430-435
    • /
    • 1987
  • A chitin-immobilized enzyme amyloglucosidase(AMG) and a bacterium Zymomonas mobilis were coentrapped in alginate gel beads. Ethanol production was performed in a packed bed column reactor in a simultaneous saccharification and fermentation(SSF) mode using liquefied sago starch as a substrate. It was found that this process eliminated product inhibition and reverse reaction of glucose enhancing the rate of saccharification and ethanol production. At a low dilution rate of D = 0.11 hr$^{-1}$, the steady-state ethanol concentration was 46.0g/$m\ell$ (96.8 % of theoretical yield). The maximum ethanol productivity was 17.7g/$m\ell$, h at D = 0.83 hr$^{-1}$ when the calculation was based on the total working volume. The continuous production of ethanol was maintained stably over 40 days without problems in this reactor system.

  • PDF

Methods for Preparing Indigestible Dextrin with High Indigestible Fraction (난소화성 획분이 높은 난소화성 덱스트린의 제조 방법)

  • Woo, Dong-Ho;Moon, Tae-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.610-617
    • /
    • 2000
  • The indigestible dextrin with high indigestible fraction was prepared by treating the enzyme hydrolysate of pyrodextrin with ethanol or strongly acidic cation exchange resin(UBK 530). Optimum conditions of ethanol treatment for preparing the indigestible dextrin from $\alpha-amylase$ and amyloglucosidase treated hydrolysate were determined based on the indigestible fraction, dietary fiber content, and yield. Ethanol was added 5-fold by weight to 30%(w/w) enzyme hydrolysate, and the mixture was kept at room temperature for 3 hr. Low molecular weight saccharides containing glucose and high molecular weight saccharides were separated by strongly acidic cation exchange resin. While initial enzyme hydrolysate by $\alpha-amylase$ and amyloglucosidase showed 43.6% of DPI(glucose) and 51.1% of DP4+(maltotetraose and over), the indigestible dextrin collected to 50% of initial enzyme hydrolysate by treatment of cation exchange resin showed 7.1% of DPI(glucose) and 91.2% of DP4+(maltotetraose and over). In conclusion, 44.5% of indigestible fraction of initial enzyme hydrolysate increased to 78.9% after separation of low molecular weight saccharides.

  • PDF

Attrition Effect of Beads on Enzymatic Saccharification of Raw Starch (생전분의 효소당화에서 유리구 마찰효과)

  • Choi, Seong-Hyun;Kim, Chan-Jo;Lee, Seuk-Keun
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.374-377
    • /
    • 1989
  • To optimize the enzymatic saccharification of raw-starch, reaction conditions by shaking with glass beads were adapted together with ${\alpha}-amylase$ from Streptomyces sp. 4M-2 and amyloglucosidase from commercial source. When raw-starch was degraded by the ${\alpha}-amylase$ in shaking flask with beads (raw-starch : bead in diam. of 3mm=1 : 5 by weight) at the shaker speed of 300rpm, the saccharification rate of corn and potato starch were increased up to 88% and 69% after 30 hrs of reaction, respectively. Application of the amyloglucosidase in combination with the ${\alpha}-amylase$ enhanced the rate of saccharifcation: 88% of saccharification was obtained in 6 hrs for raw-corn starch under the same reaction conditions as above.

  • PDF

국내산 홍화씨 부위별추출물의 이화학적특성, serotonin화합물 및 acacetin의 함량 비교

  • 김준한;김종국;강우원;김귀영;박필숙;박모라;문광덕
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.154-154
    • /
    • 2003
  • 국내산 홍화씨를 부위별(Whole, Coat and Endosperm)로 분리한 후 추출용매, 볶음조건, 효소가수분해 등의 처리조건을 달리하여 추출된 추출물의 이화학적특성과 기능성성분 함량을 분석, 비교하였다. 홍화씨 부위별추출물의 고형분함량은 60%에탄올배유부분추출물이 11.29%로, 19$0^{\circ}C$, 30분 볶음처리배유추출물이 14.53%로, amyloglucosidase 처리배유추출물이 24.21%로 높은 고형분이 추출되었다. 총페놀함량은 추출용매의 에탄올농도가 증가함에 따라 증가하는 경향이었고, 80% 에탄올점질추출물이 965mg%로 가장 높았으며, 21$0^{\circ}C$, 30분 볶음처리껍질추출물이 756 mg%로, celluase처리껍질추출물이 1170mg%로 높은 함량이었다. 총플라보노이드함량은 80%에탄올전체추출물이 317 mg%로, 21$0^{\circ}C$, 30분 볶음 처리배유추출물이 488 mg%로, $\beta$-amylase 처리전체추출물이 554 mg%로 높은 함량이었다. 유리당 중 sucrose함량은 21$0^{\circ}C$, 10분 볶음처리배유추출물이 123.4 mg%로, 60%에탄올배유추출물이 57.0 mg%로, Celluase 처리배유추출물이 67.1 mg%로 가장 높은 함량이었고, 또한 glucose, fructose, xylose 및 arabinose 등도 함유하고 있었다. 유기산 중 citric acid 함량은 20%n 에탄올배유추출물이 243.3 67.1 mg%로, 21$0^{\circ}C$, 30분 볶음처리전체추출물이 76.3 mg%로, amyloglucosidase 처리배유추출물이 699.3 mg%로 가장 높은 함량이었고, 또한, oxalic, malic, succinic, acetic 및 fumaric acid 등도 확인되었다. Serotonin 화합물 중 serotonin- I 함량은 100% 에탄올껍질추출물이 431 mg%로, 21$0^{\circ}C$, 10분 볶음처리껍질추출물이 192 mg%로, amyloglucosidase 처리껍질추출물이 256 mg%로 가장 많았다. 또한, Serotonin-II함량은 100%에탄올껍질추출물이 763 mg%로, 17$0^{\circ}C$, 10분 볶음처리전체추출물이 312 mg%로, amyloglucosidase 처리껍질추출물이 456 mg%로 가장 많았다. Acacetin 함량은 80%에탄올배유추출물이 34.9 mg%로, 21$0^{\circ}C$, 30분 볶음처리배유추출물이 221.0 mg%로, amyloglucosidase 처리배유추출물이 27.8 mg%로 가장 많았다.

  • PDF

Amyloglucosidase Catalyzed Syntheses of Bakuchiol Glycosides in Supercritical Carbon Dioxide

  • Manohar, Balaraman;Divakar, Soundar;Sankar, Kadimi Udaya
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1760-1766
    • /
    • 2009
  • Enzymatic syntheses of water soluble Bakuchiol glycosides were carried out in di-isopropyl ether organic media using amyloglucosidase from Rhizopus mold. The reactions were carried out under conventional reflux conditions and in supercritical $CO_2$ atmospheric conditions. Out of the eleven carbohydrate molecules employed for the reaction, D-glucose, D-ribose and D-arabinose gave glycosides in yields of 9.0% to 51.4% under conventional reflux conditions. Under supercritical $CO_2$ atmosphere (100 bar pressure at 50 ${^{\circ}C}$), bakuchiol formed glycosides with Dglucose, D-galactose, D-mannose, D-fructose, D-ribose, D-arabinose, D-sorbitol and D-mannitol in yields ranging from 9% to 46.6%. Out of the bakuchiol glycosides prepared, 6-O-(6-D-fructofruranosyl)bakuchiol showed the best antioxidant (1.4 mM) and ACE inhibitory activities (0.64 mM).

Effect of Pretreatment Conditions on Effective Components of Extracts from Safflower (Carthamus tinctorius L.) Seed (전처리조건이 홍화씨 추출물의 유효성분 함량에 미치는 영향)

  • Kim, Jun-Han;Park, Jun-Hong;Kim, Jong-Kuk;Lee, Jin-Man;Moon, Kwang-Deog
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.367-372
    • /
    • 2002
  • In order to utilize safflower seed effectively as a food material, it was processed at the conditions including roasting temperature/time of 170$\^{C}$/10 min to 210$\^{C}$/30 min, ethanol concentration of 0 to 100% (V/V) and enzyme hydrolysis with $\alpha$-amylase, $\beta$-amylase, amyloglucosidase and cellulase. Safflower seed extracts had the highest soluble solid content at the condition of 60% ethanol concentration, roasting at 190$\^{C}$ for 20 min and hydrolysis with amyloglucosidase. Total phenolic compounds increased with the ethanol concentration, showing the highest at the condition of 80% ethanol, roasting at 170$\^{C}$ for 30 min and hydrolysis with amyloglucosidase. High level total flavonoid was observed at the condition of 80% ethanol, roasting at 210$\^{C}$ for 30 min and hydrolysis with amyloglucosidase. Safflower seed had sucrose as major free sugar as well as xylose and arabinose as minor free sugars. Organic acids in safflower seed included oxalic, citric, magic and fumaric acid. Serotonin I (N-[2-(5-hydroxy-1H-indo-1-3-yl)ethyl]ftrulamide) and serotonin II (N-[2-(5-hydroxy-1H-indol-3yl)ethyl]-p-coumaramide) as antioxidant compounds increased with ethanol concentration, showing the highest revel at 60% ethanol. Acacetin content increased with temperature and roasting time, with a maximum of 69.47 mg% at 210$\^{C}$ for 30 min.

Immobilization of an Enzyme with Chitosan Microbeads (Chitosan Microbeads에 의한 효소고정화)

  • SOHN Heung-Sik;PARK Seong-Min;SON Byung-Yil;CHOI Hyeon-Mee;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.83-87
    • /
    • 1999
  • Immobilization of amyloglucosidase (AMG) with chitosan microbead and its possible applications were evaluated. The diameter of chitosan inicrobead was about 1.2 mm and the optimum enzyme concentration for immobilization was 6 mg/ml. The relative activity of the immobilized enzyme was $97.8\%$ at pH 4.2 and $55^{\circ}C$ and the optimum condition for the immobilized enwme was the same to that of free enzyme. In case of temperature above $30^{\circ}C$, the activity of the immobilized enzyme was a little higher than that of free enzyme. The enzyme activities of both free and immobilized were stable for 6 months when stored at $35^{\circ}C$. The optimum temperatures of both enzymes for saccharification of the dextrinized starch were $55^{\circ}C$ while the relative activity of the immobilized enzlme was $62.6\%$.

  • PDF