• Title/Summary/Keyword: amygdala

Search Result 118, Processing Time 0.044 seconds

Nuclear DNA content determinations in 15 seawater shellfish species in Korea (한국 해산 패류 15종의 DNA 함량)

  • Park, In-Seok;Choi, Hee-Jung
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.343-349
    • /
    • 2020
  • The object of this study was to obtain nuclear DNA content data for representatives of the 15 shellfish species that inhabit the coast of Korea. In the gastropoda group, the DNA content (pg DNA nucleus-1) was 3.3±0.08 in Haliotis discus hannai and 2.4±0.18 in Batillus cornutus. In the bivalvia group, the DNA content(pg DNA nucleus-1) was 2.0±0.15 in Scapharca broughtonii, 3.0±0.12 in Mytilus galloprovincialis, 2.9±0.05 in Meretrix lusoria, 2.2±0.03 in Meretrix lamarkii, 2.6±0.05 in Fulvia mutica, 1.8±0.18 in Tegillarca granosa, 3.3±0.01 in Solen corneus, 2.2±0.04 in Barnea manilensis, in 2.5±0.32 in Crassostrea gigas, 3.9±0.24 in Atrina pectinate, 3.5±0.15 in Patinopecten yessoensis, 1.9±0.16 in Amygdala philippinarum, and 2.3±0.14 in Pseudocardium sachalinensis. The results of this study provide new information for a better understanding of the genomic evolution process of the shellfish species investigated in this experiment.

Antiepileptical Properties Of Ginsenosides From Korean Red Ginseng And Ginseng Cell Culture (Dan25)

  • ChepurnovS.A.;Park, Jin-Kyu;vanLuijtelaarE.L.J.M;ChepurnovaN.E.;StrogovS.E.;MikhaylovaO.M.;ArtukhovaM.V.;BerdievR.K.;GoncharovO.B.;SergeevV.I.;TolamachevaE.A.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.116-122
    • /
    • 2000
  • The molecular modification of antiepileptic drugs and direct synthesis of new drugs with the predetermined antiepileptic properties are perspective. New neurochemical attacking to solve the problem including prevention and inhibition of seizures seems to be related to ginsenosides and ginseng polypeptides. The main study based on the severity of febrile convulsions of rat pups has been done from the earlier investigations of antiepileptical action of ginsenosides between KGTRI and MSU (Chepurnov, Park et al., 1995) with different kinds of experimental models of epilepsy. From the cultured cell line DAN25 of ginseng root, the extracts of ginsenosides made in "BIOKHIMMASH" were studied by the project of preclinical anticonvulsant screening (Stables, Kupferberg, 1997). The inhibition of severity of convulsions, decrease of seizures threshold, decrease of audiogenic seizures in rats of different strains and normalization of cerebral blood flow (measured by hydrogen test) were demonstrated in rats after i.c.v., intraperitoneally and orally administration, respectively. The antiepileptical effects by the combination of compounds from ginseng; were compared with the iuluence of Rg1, Rb1, Rc and with the well known antiepileptical drugs such as carbamazepine, valproic acid. The base for the research is obtained by using the WAG/Rij strain (Luijtelaar, Coenen, Kuznetcova), an excellent genetic model for human generalized absence epilepsy. The improving action of gensinosides was effectively demonstrated on the model of electrical kindling of amygdala of WAG/Rij rats with genetically determined absences, and the influences of ginsenosides on the slow wave discharges have also been being investigated. The different characteristics of a kindling process exerted in the sex-different region of the amygdala and demonstrated that the level of sex steroids and content of neurosteroids in amygdaloid tissue can modify the development of seizures. The chemical structures of ginsenosides not only have some principal differences from well-known antiepileptical drugs but the Plant Pharmacology gives us unique possibility to develop new class of antiepileptic drugs and to improve its biological activity.

  • PDF

Neurophysiological and Neuroimaging Characteristics of Depression and Anxiety (우울과 불안의 뇌 기능 - EEG, ERP, Functional Neuroimaging, HRV 소견을 중심으로 -)

  • Choo, Jung-Suk;Lee, Seung-Hwan;Chung, Young-Cho
    • Anxiety and mood
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2008
  • The purpose of this review was to investigate the neurophysiological and neuroimaging characteristics of patients with depression and anxiety reported in previous studies. A literature search was conducted using Medline and psychiatric textbooks. "Electroencephalography (EEG)", "Event Related Potentials (ERP)", "functional neuroimaging", "heart rate variability (HRV)" and "depression or anxiety" were used as key words. A physiological finding indicated that there was a higher degree of relativity with regards to prefrontal dysfunction in patients with depression. Right prefrontal lobe hyperactivity and left prefrontal hypoactivity were consistently observed, and abnormalities were observed in other regions (ACC, hippocampus, amygdala, etc.). Therefore, dysfunctions in these areas are related to depressive symptoms. In patients with anxiety disorder, each emotional condition showed specific activation patterns in different brain regions, such as the prefrontal cortex, occipital lobe, temporal lobe, hippocampus, and limbic system, including the amygdala. However, in the majority of patients with anxiety disorder, the degree of activation was higher in the right hemisphere than in the left hemisphere. The current data supports that there is a difference in brain dysfunction characteristics between depression and anxiety and that the different activations of various brain regions would play a significant role in the pathophysiology of depression and anxiety disorder.

  • PDF

From Gut to Brain: Alteration in Inflammation Markers in the Brain of Dextran Sodium Sulfate-induced Colitis Model Mice

  • Do, Jongho;Woo, Jungmin
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.422-433
    • /
    • 2018
  • Objective: Neuropsychiatric manifestations like depression and cognitive dysfunction commonly occur in inflammatory bowel disease (IBD). In the context of the brain-gut axis model, colitis can lead to alteration of brain function in a bottom-up manner. Here, the changes in the response of the hypothalamic-pituitary-adrenal axis and inflammation-related markers in the brain in colitis were studied. Methods: Dextran sodium sulfate (DSS) was used to generate a mouse model of colitis. Mice were treated with DSS for 3 or 7 days and sacrificed. We analyzed the gene expression of brain-derived neurotrophic factor (BDNF), cyclooxygenase 2 (COX-2), and glial fibrillary acidic protein (GFAP), and the expression of GFAP, in the hippocampus, hypothalamus, and amygdala. Additionally, the levels of C-reactive protein (CRP) and serum cortisol/corticosterone were measured. Results: Alteration of inflammatory-related markers varied depending on the brain region and exposure time. In the hippocampus, COX-2 mRNA, GFAP mRNA, and GFAP expression were upregulated during exposure to DSS. However, in the hypothalamus, COX-2 mRNA was upregulated only 3 days after treatment. In the amygdala, BDNF and COX-2 mRNAs were downregulated. CRP and corticosterone expression increased with DSS treatment at day 7. Conclusion: IBD could lead to neuroinflammation in a bottom-up manner, and this effect varied according to brain region. Stress-related hormones and serum inflammatory markers, such as CRP, were upregulated from the third day of DSS treatment. Therefore, early and active intervention is required to prevent psychological and behavioral changes caused by IBD, and region-specific studies can help understand the precise mechanisms by which IBD affects the brain.

Effect of Sihogayonggolmoryeotang on SPS-induced PTSD in Rats (시호가룡골모려탕(柴胡加龍骨牡蠣湯)이 흰쥐에서 SPS로 유도된 PTSD에 미치는 효과)

  • Kim, Hwi-Yeol;Lee, Tae Hee
    • Herbal Formula Science
    • /
    • v.27 no.2
    • /
    • pp.121-136
    • /
    • 2019
  • Objective : To investigate the effect of sihogayonggolmoryeotang (SY) on Single Prolonged Stress(SPS)-induced Post Traumatic Stress Disorder(PTSD). Method : To confirm the effects of SY on SPS-induced PTSD, Changes in body weight, sucrose intake open field test(OFT) and forced swimming test(FST)were observed. After behavioral tests, the plasma corticosterone(CORT) from the abdominal aorta, serotonin(5-HT) from prefrontal cortex, hippocampus, amygdala and striatum, norepinephrine(NE) and dopamine(DA) from hippocampus was measured by ELISA. mRNA expression of brain-derived neurotrophic factor(BDNF) and cAMP response element-binding protein(CREB) in hippocampus was measured by RT-PCR. Result : Weight change and sucrose intakes of rats in 14th day after the administration of SY were significantly increased in the SPS + SY450 group compared to the SPS group (p<0.05). Numbers of crossing in the central zone in the OFT were significantly increased in the SPS + SY450 group (p<0.05) compared with the SPS group. The immobility time of FST was significantly decreased in SPS + SY450 group compared with SPS group (p<0.05). The change of plasma CORT concentration was significantly decreased in SPS + SY450 group compared with that in SPS group (p<0.05). The change of 5-HT concentration was significantly increased in the SPS + SY450 group at hippocampus and amygdala compared with the SPS group (p<0.05). The concentration of DA was significantly increased in the SPS + SY450 group compared with the SPS group (p<0.05). The expression of BDNF and CREB were significantly increased in SPS + SY450 group compared with the SPS group (p<0.05). Conclusion : SY administration lowered the increase of CORT caused by PTSD and increases the 5-HT concentration and reversed the decreased expression of NE and DA and BDNF and CREB by PTSD. It is postulated that SY is effective in treating PTSD by restoring cognitive function, memory impairment, unstable emotional disturbances.

A Simulation Study on Transcranial Direct Current Stimulation Using MRI in Alzheimer's Disease Patients (알츠하이머병 환자의 MRI를 활용한 경두개 직류 전기 자극 시뮬레이션에 관한 연구)

  • Chae-Bin Song;Cheolki Lim;Jongseung Lee;Donghyeon Kim;Hyeon Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.377-383
    • /
    • 2023
  • Purpose: There is increasing attention to the application of transcranial direct current stimulation (tDCS) for enhancing cognitive functions in subjects to aging, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Despite varying treatment outcomes in tDCS which depend on the amount of current reaching the brain, there is no general information on the impacts of anatomical features associated with AD on tDCS-induced electric field. Objective: The objective of this study is to examine how AD-related anatomical variation affects the tDCS-induced electric field using computational modeling. Methods: We collected 180 magnetic resonance images (MRI) of AD patients and healthy controls from a publicly available database (Alzheimer's Disease Neuroimaging Initiative; ADNI), and MRIs were divided into female-AD, male-AD, female-normal, and male-normal groups. For each group, segmented brain volumes (cerebrospinal fluid, gray matter, ventricle, rostral middle frontal (RMF), and hippocampus/amygdala complex) using MRI were measured, and tDCS-induced electric fields were simulated, targeting RMF. Results: For segmented brain volumes, significant sex differences were observed in the gray matter and RMF, and considerable disease differences were found in cerebrospinal fluid, ventricle, and hippocampus/amygdala complex. There were no differences in the tDCS-induced electric field among AD and normal groups; however, higher peak values of electric field were observed in the female group than the male group. Conclusions: Our findings demonstrated the presence of sex and disease differences in segmented brain volumes; however, this pattern differed in tDCS-induced electric field, resulting in significant sex differences only. Further studies, we will adjust the brain stimulation conditions to target the deep brain and examine the effects, because of significant differences in the ventricles and deep brain regions between AD and normal groups.

Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders (신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰)

  • Lee, Kyungmin
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas such as cerebral cortex, hippocampus and amygdala have abnormalities in neuroglial numbers and functions in subjects with mental illnesses including schizophrenia, dementia and mood disorders like major depression and bipolar disorder. These findings highlight the putative role and involvement of neuroglial cells in mental disorders. Herein I discuss the physiological roles of neuroglial cells such as astrocytes, oligodendrocytes, and microglia in maintaining normal brain functions and their abnormalities in relation to mental disorders. Finally, all these findings could serve as a useful starting point for potential therapeutic concept and drug development to cure unnatural behaviors and abnormal cognitive functions observed in mental disorders.

Effects of Polygala tenuipolia on Expression of Fos-protein and Ethanol Amnesia in Rat

  • Lee, Soon-Chul;Kim, Kwang-Kyu;Jang, Jin-Hee;You, Kwan-Hee
    • Biomedical Science Letters
    • /
    • v.8 no.3
    • /
    • pp.167-172
    • /
    • 2002
  • Effect of single administration of Polygala tenuipolia was examined on short-term memory in step through test and the intensity of the immunoreactive c-Fos protein induced by oral administration of ethanol. The acquisition of memory was significantly reduced by ethanol, and ethanol amnesia was remarkably reversed following oral administration of Polygala tenuifolia. c-Fos protein in normal rat brain was highly expressed in order of thalamus, pariental cortex, hippocampus, hypothalamus, amygdaloid and cingulate cortex. The expression of Fos protein was remarkably suppressed by single administration of ethanol. The inhibitory effect of ethanol on expression of Fos protein was reversed by single administration of Polygara tenuipolia, especially tissues of limbic areas such as amygdala, parietal cortex and CA3 of hippocampus. These results suggested that the amelioration process of Polygala tenuipolia on ethanol amnesia seems to be involve the expression of c-Fos protein in partly.

  • PDF

Molecular Genetics of Anxiety Disorder (불안장애의 분자유전학적 이해)

  • Kim, Jung-Jin
    • Anxiety and mood
    • /
    • v.3 no.1
    • /
    • pp.3-7
    • /
    • 2007
  • Anxiety disorder is likely caused by an interaction of multiple loci in brain, rather than a single locus. Hyperactive neurotransmitter circuits between the cortex, thalamus, amygdala, and hypothalamus are responsible for production of anxiety symptoms. Familial studies performed on anxiety disorder suggested that anxiety disorder should be caused by genetic etiology. Numerous linkage and association studies showed different genetic loci of anxiety disorder. Candidate genes have been focused on important neurotransmitters, neuropeptide, or genes affecting neuronal growth, development, protection or apoptosis. Anxiety disorder has various symptoms and comorbid diseases in family or proband. Therefore, further studies focused on symptomatic dimension of anxiety disorder or responses to drugs are required.

  • PDF

Neural Adaptation of Beta Adrenergic Receptor Subtypes after Chronic Imipramine Treatment: A Quantitative Autoradiographic Study

  • Park, Hae-Young;Hong, Young-Sook;Park, Chan-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.161-167
    • /
    • 1997
  • This study compares the subtypes of central beta adrenergic receptors (ARs) of brains of untreated rats with those of imipramine-treated rats. Beta adrenergic receptors were measured by quantitative autoradiography of the binding of $^3H$-dihydroalprenolol ($^3H$-DHA) in coronal sections of rat brain. Repeated treatment of rats with imipramine significantly reduced the binding of $^3H$-DHA to beta-1 AR in many brain areas, especially throughout the cerebral cortex, hippocampus, thalamus, and amygdala. Significant reductions of the binding of $^3H$-DHA to beta-2 AR were not found in any area of the brain. These data suggests that a selective down-regulation of beta-1 AR may be involved in the adaptive changes occurring after prolonged imipramine treatment.

  • PDF