• Title/Summary/Keyword: amputees

Search Result 56, Processing Time 0.036 seconds

Gender Differences in the Sensitivity and Displeasure Caused by the Vibration Stimuli Applied to the Forearm in Upper Limb Amputees

  • Kim, Sol Bi;Ko, Chang-Yong;Chang, Yun Hee;Kim, Gyoo Suk;Kim, Sin Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2013
  • Objective: The aim of this study is to investigate the gender-differences in vibrotactile responses(sensitivity and displeasure) of residual forearm simulated by vibration stimulation in upper limb(trans-radial) amputees. Background: Several studies have reported that vibration stimulation using the haptic vibrator is one the most effective methods for delivering sensation to an amputees. However, few studies have reported the perception to haptic vibratory stimulus, particularly sensitivity and displeasure. Method: We set up a custom-made vibration stimulation system that included 6 actuators(3 medial parts and 3 lateral parts) and a graphical user interface(GUI)-based acquisition system to investigate changes in residual somatosensory sensibility and displeasure in the forearm of upper limb(trans-radial) amputees. Vibration actuators were attached at the 25%-point on the proximal forearm. Stimulation with 32Hz, 64Hz, or 149Hz of frequency was used for the sensitivity tests and with 32~257Hz of frequency was used for the discomfort experiments. The subjective responses were evaluated on a 10 point scale. Results: The results showed that vibrotactile sensory perception in male amputees were higher than that in female amputees. In male amputees, the response at lateral area of forearm was the most sensitive than medial area; but, female amputees showed similar sensitive areas. Subjects did not experience any discomfort during vibrotactile stimuli. Conclusion: Vibrotactile response in the amputees was dependent on gender as well as area stimulated by vibration. Application: The results might contribute to develop the vibrotactile feedback system for the amputees.

Effect of Multi-Channel Vibration Stimulation on Somatosensory Sensibility (다채널 진동자극이 체성감각에 미치는 영향)

  • Bae, Tae-Soo;Kim, Hyung-Jae;Kim, Sol-Bi;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.651-656
    • /
    • 2011
  • Although prosthetic training was received, most of amputees mainly depend on visual feedback to use prostheses, not on cutaneous and proprioceptive sensibility. Our objective of this study was to determine if there are changes in the somatosensory sensibility of amputees compared to non-amputees using multi-channel vibration stimulation system. One transradial amputees and ten non-amputees were involved. To investigate changes of residual somatosensory sensibility at stump, we set up custom-made vibration stimulation system including eight actuators (4 medial and 4 lateral) and GUI-based acquisition system. The results showed that there was similar pattern of subjective response at most of channels among group as stimulation increases. However, amputees' subjective response at channel 8 for 238Hz vibration was more sensitive than that of healthy persons. With respect to channels, response at channel 4 (medial) corresponding region to flexor carpi ulnaris for transradial amputees was most sensitive than other channels. In addition, sensitivity of four medial channels was on average about 0.5 scale than that of four lateral channels. Somatosensory sensibility was amputee, women, and men in sensibility order.

The effect of biomechanical isokinetic excercise of residual muscles in the stump on restoring gait of transfemoral and transtibial amputees (하지절단자의 보행 복원을 위한 단단부 잔존근육의 생체역학적 등속성 운동 효과에 대한 연구)

  • 홍정화;송창호;이재연;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.723-728
    • /
    • 2003
  • The physical restoration technology for lower limb amputees is being advanced as the biomechatronics is being applied to the area of rehabilitation. As the advanced prosthetics for lower limb amputees are introduced, a suitable prescription of biomechanical rehabilitation training becomes important to utilize the advanced full features of the devices. Since lower limb amputation significantly affects biomechanical balance of mosculoskeletal system for gait, an appropriate and optimal biomechanical training and exercise should be provided to rebalance the system before wearing the prostheses. Particularly, biomechanical muscular training for hip movements in the both affected and sound lower limbs is important to achieve a normal-like ambulation. However, there is no study to understand the effect of hip muscle strength on the gait performance of lower limb amputees. To understand the hip muscle strength characteristics for normal and amputated subjects, the isokinetic exercises for various ratios of concentric contraction to eccentric contraction were performed for hip flexion-extension and adduction-abduction. As a results. biomechanical isokinetic training protocols and performance measurement methodologies for lower limb amputees were developed in this study. Using the protocols and measurement methods, it has been understood that the appropriate and optimal biomechanical prescription for the rehabilitation process for lower limb amputees is important for restoring their gait ability

  • PDF

Relationships Between the Transfemoral Socket Interface Pressure and Myoelectric Signal of Residual Limb During Gait

  • Hong, J.H.;Lee, J.Y.;Chu, J.U.;Lee, J.Y.;Mun, M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1070-1073
    • /
    • 2002
  • The biomechanical interaction between the stump and the prosthetic socket is critically important to achieve close-to-normal ambulation. Many investigators suggested that the pressure changes during gait of transfemoral amputees are closely related to the prosthetic alignment, the socket shape, the stump size, and the residual muscle activity. The effects of the prosthetic alignment, the socket shape, and the stump size on the interface pressure were investigated previously. However, there is no report how the residual muscle activities in the transfemoral stump affect the socket interface pressure characteristics during gait. Since designs of socket fur lower limb amputees need to consider the socket interface pressure characteristics, the interface pressure patterns by the residual muscle activities during gait should be investigated. In this study, myoelectric signals (MES) and socket interface pressure in residual limb of transfemoral amputees were measured during the stance and swing phases of gait. For the purpose, specially designed quadrilateral sockets that MES electrodes could be instrumented were fabricated. A total of two transfemoral amputees were participated in the experiments. The measured temporal MES amplitude and interface pressure in knee flexor (biceps femoris) and extensor (rectus femoris) had significant correlations (P < 0.05). Based on the test results, It was suggested that the residual muscle activity of transfemoral amputees stump is an important factor affecting socket pressure changes during walk.

  • PDF

Effect of Foot Eversion on Knee and Ankle of Trans-tibial Amputees (인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향)

  • Bae, Tae-Soo;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1505-1508
    • /
    • 2008
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.

  • PDF

The Measurement of the Magnitude of Sensory Perception and Displeasure to the Vibration Stimuli applied on Forearm in upper Limb Amputees (진동자극에 대한 상지 절단자의 전완부 감각 인지 크기와 불쾌감 측정)

  • Kim, Sol-Bi;Chang, Yun-Hee;Kim, Shin-Ki;Kim, Gyoo-Suk;Mun, Mu-Sung;Bae, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.705-710
    • /
    • 2012
  • Research involving discomfort or pain related to haptic vibratory stimulation the for prosthesis users of myoelectrical hand is very lacking. Our objective of this study was to evaluate the displeasure and sensitivity of areas in forearm using vibration stimulation system between upper limb amputees and non-amputees. Twenty transradial amputees and forty non-amputees (20 youth, 20 elderly) were involved. We set up custom-made vibration stimulation system including eight actuators (4 medial parts and 4 lateral parts) and GUI-based acquisition system, to investigate changes of residual somatosensory sensibility and displeasure at proximal 25% of forearm. Eight vibration actuators were attached to the circumference of proximal 25% point of forearm at regular intervals. Sensitivity tests were used to stimulate the 120Hz and discomfort experiment was used to 37 ~ 223Hz. The subjective responses were evaluated by 10 point scale. The results showed that both groups were similar in sensitive areas. Response at around of radius was most sensitive than other areas in all subjects. Elderly group do not appear discomfort of vibrotactile; however, youth group and amputee presented discomfort of vibrotactile. Prosthesis with a vibrotactile feedback system should be developed considering the sensitivity. Furthermore, Future studies should investigate the scope of application of that principle.