• Title/Summary/Keyword: amount of working fluid

Search Result 68, Processing Time 0.017 seconds

A Study on Heat Transfer Characteristics of Separate Type Heat Pipe with a Rotor (회전자를 갖는 분리형 히트파이프의 열전달특성에 관한 연구)

  • Jun, C.H.;Kim, O.G.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.75-84
    • /
    • 2000
  • The purpose of this research is to study on the heat transfer characteristics of separate type heat pipe with a rotor. The heat transfer characteristics of the rotor condenser are various on input heat of evaporator, rotational speeds of rotor, and working fluid amount. The results obtained from the study are as follows. 1. Magnetic fluid using seal of the rotor operated in stability by a variation of temperature and rotation speeds. The configuration of magnetic fluid seal assembly was adequate. 2. Steam ejector is effective in recovering working fluid condensate in the rotor. When steam ejector is operating, the heat flux of working fluid does not change, with the wall temperature in the rotor. 3. The optimum design conditions on working fluid amount and rotational speeds are effective in evaporator volume 50%, rotational speeds 200rpm, 300rpm, and operating temperature $80^{\circ}C$. With working fluid amount increasing, overall heat transfer coefficient decreases linearly.

  • PDF

The Effect of Working Fluid Charge on the Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System (중온 태양열 축열조용 히트파이프의 작동액체 충전량이 열성능에 미치는 영향)

  • Min, Kyu-Park;Joon, Hong-Boo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.68-73
    • /
    • 2011
  • An experimental study was conducted to investigate the thermal performance of a medium-temperature heat pipe against the charge amount of working fluid. The container and the wick of the heat pipe were made of stainless steel and the working fluid was Dowtherm-A for medium-temperature applications around $250^{\circ}C$. The diameter and length of the heat pipe were 25.4 mm and 1 m, respectively. The maximum thermal load was 1 kW and the working fluid charge ratio varied from 372% to 420%. The results showed that the thermal resistance ranged from 0.12 to $250^{\circ}C/W$ and the effective thermal conductance ranged from 7,703 to $8,898 W/m{\cdot}K$. Dry-out occurred for the heat pipe with 372% fill-charge at the heat load of 950 W, while the other heat pipes with higher charge amount did not encounter dry-out up to 1060 W.

  • PDF

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

Factors Affecting Performance of a Proto type Windheat Generation System

  • Kim Y.J.;Yun J.H.;Ryou Y.S.;Kang G.C.;Paek Y.;Kang Y.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.22-26
    • /
    • 2005
  • A wind-heat generation system was developed and the system consisted of an electric motor, a heat generation drum, a heat exchanger, two circulation pumps and a water storage tank. The heat generation drum is an essential element determining performance of the system. Frictional heat was generated by rotation of a rotor in the drum filled with a working fluid, and the heat stored in the fluid was used to increase water temperature through the heat exchanger. Effects of some factors such as rotor shape, kind and amount of working fluid, rotor rpm and water flow rate in the heat exchanger, affecting the system performance were investigated. Amounts of heat generated were varied, ranging from 126,000 to 32,760 kJ/hr, depending on combination of the factors. Statistical analysis using GLM procedure revealed that the most influential factor to decide the system performance was amount of the fluid in the drum. Experiments showed that the faster the speed of the rotor, the greater heat was obtained. The greatest efficiency of the heat generation system, electric power consumption rate vs gained heat amount of water, was about 70%. Though the heat amount was not enough for plant bed heating of a 0.1-ha greenhouse, the system would be promising if some supplementary heat source such as air- water heat pump is added.

  • PDF

An Experimental Study on the Flow Motion of the Working Fluid in Miniature Thermosyphons (미세 서모사이폰 내의 작동유체의 유동에 대한 실험적 연구)

  • Oh, K.Y.;Kim, K.N.;Jang, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.341-346
    • /
    • 2000
  • This experimental study investigated the flow motion of the working fluid for various diameters of miniature thermosyphons and the performance characteristics for the various amount of the working fluid. The temperatures of condenser surface were measured and visual observations were conducted. The test results show that some fluid condensed in the tube diameters of 0.18cm and 0.22cm is not returned to the evaporator section due to capillary effect so that large temperature gradients are measured. To enhance returning the working fluid, one copper wire of 0.5mm diameter was inserted and the test results show good performance. When the liquid charge was less than 10% in volume dry-out was occurred fur the thermosyphons of the inner diameter of 1.8mm and 2.2mm.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of Stainless-Acetone Heat Pipe (스테인리스-아세톤 히트파이프의 열전달 특성에 관한 실험적 연구)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.489-496
    • /
    • 2000
  • This study was conducted in order to find an ideal working fluid kind and a proper filling amount in the heat pipe as well as an inclined angle of heat pipe when they are placed to recover exhaust gas heat in the hot air heater. Followings are the findings of this research. 1. Of the four different working fluids-gasoline kerosene distilled water and acetone-acetone filled heat pipe showed the best performance giving out more homogeneous temperature profile on the radiating part than the kerosene and gasoline heat pipe an carrying out heat transmitting function better than the distilled water heat pipe by 10~2$0^{\circ}C$ higher on the radiating part. Acetone would be a good choice for recycling of exhaust gas heat in the hot air heater. 2. Of the filling amount of working fluid inside the heat pipes dry-out situations possible caused by insufficient filling were found in the filling amount of 5, 7.5 and 10% heat pipes as heat supply rate increases gradually in the range of 50 to 15kJ/sec. but no dry-out and stabilized heat transmitting performance occurred in the heat pipes of 12.5 and 15% filling at the same heat supply rate. It recommends that filling amount shall exceed 12.5% at least with the working fluids of this experiment. 3. The test revealed that the heat transmitting performance of heat pipe was more affected by filling amount rather than inclined angle.

  • PDF

A Study on the Drag Reduction by an Additives in Cylindrical Vertical Tube (수직원형관에서 첨가제에 따른 마찰저항 감소에 관한 연구)

  • Cha, K.O.;Kim, J.G.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.85-96
    • /
    • 2000
  • When the liquid with the additive of ppm unit of a polymer flows, the pressure drop can be manifestly decreased compared to that of pure liquid: that's the drag reduction. This method is that a small amount of a polymer which doesn't make the transformation of the properties of the working fluid is dissolved into the working fluid, the links of chains of the polymer do a buffer action to the molecules of the working fluid which come out between near the wall of the pipe and the interface, so that the pressure drop is dramatically decreased. When we transport the fluid, therefore, we can save a lot of pumping power, or we can increase the transportation capacity with using the same transportation equipment. But when a polymer solution is also flowing in the fluid transportation system, the degradation which have a very close relation with the phenomena of the drag reduction occurs necessarily. When adding polymer to reduce the drag in two phase flow system, It is impossible to find some studies. This study is focussing on a searching examination for the experimental study considering the mechanical degradation in the closed tow phase system to find out the conditions which could improve the pump capacity.

  • PDF

A Study on the Improvement of the Condensation Heat Transfer Performance of the Helical Grooved and Plain Thermosyphons (나선 그루브와 평관형 열사이폰의 응축열전달 성능 향상에 관한 연구)

  • Han, K.I.;Park, J.U.;Cho, D.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-53
    • /
    • 2006
  • This study concerns the performance of condensation heat transfer in plain and grooved thermosyphons. Distilled water, methanol, ethanol have been used as the working fluids. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A study was carried out with the characteristics of heat transfer of the thermosyphon 50, 60, 70, 80, 90 helical grooves in which boiling and condensation occur. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the kinds of working fluid, the inclination angle, grooves and operating temperature have been used as the experimental parameters. The experimental results show that the number of grooves, the amount of the working fluid, the kind of working fluid, angle of inclination angle are very important factors for the operation of thermosyphon. The maximum heat transfer was obtained when the liquid fill was about 20 to 25 % of the thermosyphon volume. The relatively high rates of heat transfer have been achieved in the thermosyphon with grooves. The helical grooved thermosyphon having 70 to 80 grooves in water, 60 to 70 grooves in methanol and 70 to 80 grooves in ethanol shows the best heat transfer coefficient in both condensation.

  • PDF

Performance Analysis of the Wind Power Heat Generation Drum Using Fluid Frictional Energy (유체마찰에너지를 이용한 풍력열발생조의 성능 분석)

  • Kim, Yeong-Jung;Yu, Yeong-Seon;Gang, Geum-Chun;Baek, Lee;Yun, Jin-Ha;Lee, Geon-Jung
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.263-270
    • /
    • 2001
  • This study was conducted in order to develop wind-water heating system where frictional heat is creased between the rotor and working fluid when they are rotating in the cylindrical heat generator. The wind-water heating system is composed of rotor, stator, working fluid, motor, inverter and heat generation tank. Instead of wind turbine, we have used an electrical motor of 30㎾ to rotate the rotor in this system. Two working fluids and six levels of rotor rpm were tested to quantify heat amounts generated by the system. Generally, as motor rpm goes up heat amount increases that we have expected. At the same rpm, viscous fluid showed up better performance than the water, generating more heat by 10$\^{C}$ difference. The greatest heat amount of 31,500kJ/h was obtained when the system constantly drained out the hot water of at the flow rate of 500ℓ/h. Power consumption rate of the motor was measured by thee phase electric power meter where the largest power consumption rate was 14㎾ when motor rpm was 600 and gained heat was 31,500kJ/h, that indicated total thermal efficiency of the wind power water heating system was 62%.

  • PDF