• Title/Summary/Keyword: amount of absorbed water

Search Result 116, Processing Time 0.03 seconds

Water Absorption Characteristics of Substrate with Physical Properties of wick in Subirrigation System Using wick (심지형 저면관수시스템의 심지의 물리적 성질에 따른 수분흡수 특성)

  • Dong Ho Jung;Jung Eek Son
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.41-42
    • /
    • 2001
  • The objectives of this study were to investigate the effect of the physical properties of wick on the water absorption of substrate. Physical properties of wick in this study were cotton composition, width and length. The water Infiltration rate through the wick was 0.24 ㎝/s at 90 -95% cotton content, which was faster than at 80-85% (0.13 cm/s) and 70-75% (0.08 cm/s). As the cotton content increased, the water absorption of substrate became greater : the amount of absorbed water was about 5-7g higher at 90-95% than at 80-85% and 70-75% at a wick width of 1 ㎝, the velocity of water absorption through the wick was fastest with 0.25 ㎝ㆍs/sup -1/. The amount of absorbed water was higher at 3 ㎝ than at 1 and 2 ㎝. However, the water absorption rate through the cross - sectional area of wick (g H₂O /㎠/hr) was higher at a wick width of 2 ㎝ than at those of 1 and 3 ㎝. The amount of absorbed water in the substrate was higher at 2 : 1 than at 1 : 1 (length in substrate : length out of substrate). Absorbed water amount was larger at 30-40% initial moisture content than any other treatment.

  • PDF

Nutrient and Water Uptake of Cucumber Plant by Growth Stage in Closed Perlite Culture (순환식 펄라이트재배에서 생육단계에서 따른 오이의 양수분 흡수 특성)

  • 김형준;김진한;우영희;남윤일
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • The objective of this study was to estimate the amount of nutrient and water taken up at different growth stages by cucumber (Cucumis sativus L. cv. Eunsung Backdadagi) grown in a closed substrate culture system. The amount of nutrient solution absorbed increased in proportion to days from planting at the first stage of growth and depended on the level of radiation after the mid stage of growth. After the mid growth stage, the amount of nutrient solution absorption was maintained at 80-100 mg.MJ$^{-1}$ . Total amount of absorbed inorganic ions except S increased since the nutrient solution absorption increased with the level of radiation, although the absorption rate of each inorganic ion declined. A highly significant correlation ($R^2$>0.9) was found between amount of inorganic ions absorbed and days after planting, LAI, total dry weight and leaf dry weight, but not with CGR. Correlation coefficient between days after planting and the amount of nutrient solution absorbed per unit radiation level was 0.92. Correlation coefficient between leaf area an the amount of nutrient solution absorbed per unit radiation level was 0.97. Regression of the amount of nutrient solution absorbed per unit radiation level and nutrient ions uptake showed a high significance ($R^2$>0.9).

  • PDF

FEA Simulations on Water Absorption in Various Pre-Cracked Concretes (유한요소해석에 기반한 콘크리트 균열 조건에 따른 수분흡수 현상 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.68-75
    • /
    • 2021
  • This study performed simulating water absorption in various pre-cracked concretes. 2D-Finite Element Analysis (2D-FEA) model was developed based on experimental results on the amount of absorbed water in concrete with the exposure time. Results from the 2D-FEA showed that both crack width and crack depth strongly affect the amount of absorbed water in cracked concrete. In addition, water absorption rate is introduced and a predictive equation is suggested to estimate the rate in order to quantify the amount of absorbed water in cracked concrete. It was confirmed that water absorption in concrete having less than 150 mm crack depth was dominated as a main transport factor regardless of crack width. Therefore, considering that steel corrosion caused by chlorides dissolved in water mainly occurs in reinforced concrete structures, it is necessary that crack depth as well as crack width should be investigated in reinforced concrete structures at the time of field-inspection.

A study on the water absorption in protective coatings (방식도막에 있어서 물의 흡수에 관한 연구)

  • Park Jin-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.55-59
    • /
    • 1998
  • The water absorption in protective coatings, which may greatly influence the durability of these coatings, was studied using quartz crystal microbalance and electrochemical impedance technique. The water absorption in protective coatings and the change of coating capacitance with concentration of electrolyte were measured. The water absorption in coatings seems to be driven by osmotic pressure, and larger amount of water was absorbed in thinner coatings at initial stage of absorption. The amount of water absorbed in coatings changed with the type and crosslinking density of resin used in coating formulation. When water absorption and desorption of coating occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thinner film.

Effects of Inorganic Nitrogen released from Roots on the Nitrogen Metabolism (뿌리 방출물중 무기태질소가 체내성분 변이에 미치는 영향)

  • 소상섭
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.5-14
    • /
    • 1979
  • In several leguminous plants such as acasia, arrowroot and bushclover, growth rate and contents of nitrogen, phosphorus and potassium in the tissues and the variation in the culture media were determined. In water cultrue which was free of added nutrients, nitrogen was found to be largely in the form of nitrate(NO3-N). This NO3-N is believed to be the result of nitrification from NH4-N which was apparently released form the plants. From the studies of organ culture with root segments, the amount of nitrogen released and absorbed was found to be proportional to the amount added to the mediuim. Especially, in the N-plot, the amount of nitrogen absorbed by the tissue reached more than 90% of the amount supplied to the medium already in early stage. On the contrary, in the amount free plot, the amount of nitrogen released from the tissue was lower than the minimum level in the N-plot. The amount of total N and P in the cultured tissue was found to be influenced by the amount of nitrogen addedin the medium. However, the amount of K in the tissue was not related to the nitrogen level in the medium, but rather it was influenced by the amount of added potassium. These findings present little difference in the metabolic pattern among the three species plants studied, and suggest that the woody leguminous plants have some common features in tehir metabolic pattern.

  • PDF

Anticorrosive Ability and Mechanism of Hydroxyapatite Pigment

  • Park, J.H.;Lee, G.D.;Nishikata, A.;Tsuru, T.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.15-18
    • /
    • 2005
  • Hydroxyapatite(HAp) was synthesized using the waste sludge from semiconductor process and used as an anticorrosive pigment. The water absorption of coating pigmented with anticorrosive pigment and the corrosion at interface between coating and substrate were monitored using AC impedance techniques. The anticorrosive performance of HAp was compared with those of red lead(RL) and zinc potassium chromate(ZPC), which have been known as representative anticorrosive pigments. The amount of absorbed water in ZPC- and HAp- pigmented coatings was much higher compared to that in RL-pigmented and unpigmented film. However, it seems that the water absorbed into HAp- or ZPC-pigmented film is beneficial to anticorrosive function. The anticorrosive performance of HAp is superior or at least comparable to those of ZPC and RL. The excellent anticorrosive properties of HAp can be explained by its passivating ability, caused by the reaction of the soluble component of HAp with Fe to form iron phosphate in the presence of water.

The Study on Mordant Absorption and Mordanting Treatment Condition of Natural Dyeing (천연염색의 매염제 흡착 및 매염조건에 관한 연구)

  • Chu Young-Joo
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.5 s.95
    • /
    • pp.101-107
    • /
    • 2005
  • In this article, mordant absorption rate by the Change of temperature and fabric, discharge level by water washing, mordant density and method in mordant dye are going to be handled. Besides, how treatment method will have an effect on absorption rate and color, is also going to be covered. An atom extinction photometer was used to measure the amount of mordant absorbed in fabric at each temperature and mordant type. It turned out that absorption rate differs according to the type of mordant and sample or temperature. Also it turned out that the mordant input amount has little influence on absorption rate, that is to say, if though you use more mordants, just tiny amount of mordant is going to be absorbed in cloth. It is true that the higher temperature goes up, the better mordant absorption gets. It is found that the type of mordant and sample, treatment period affects the discharge rate. Normally $15{\~}98\%$ mordant comes off the fabric by water washing, to be specific, $17{\~}47\%$ Iron by water washing and it has better performance on cotton and nylon than silk, $1\%{\~}52\%$ Aluminum by water washing and better absorption on silk, $36{\~}89\%$ Chrome by water washing and better absorption on silk, $50{\~}89\%$ copper by water washing and better absorption on silk, poor on cotton. The examination of the K/S values and colors between before and after soaping has been conducted under the circumstance that the test fabrics had been treated at $80^{\circ}C$ for 30 minutes with $0.2\%$ soaping solution. In case of pre-mordanted fabrics, the K/S value nosedived after soaping, meanwhile densely mordanted fabric's K/S value soared but after soaping, it dropped sharply. It turned out that soaping treatment deteriorates absorption much more than water washing. It's considered that $0.1 \%$ (W/V) of mordant density is appropriate.

The Effective Preparation of Flavonoids from Scutellaria baicalensis GEORGI by Diaion HP-20 Resin

  • Yu, Young-Beob
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.635-641
    • /
    • 2014
  • Scutellaria baicalensis $G_{EORGI}$ (Scutellariae Radix) has been used to clear heat and to dry dampness in the stomach or intestines, which manifests as diarrhea or dysenteric disorder. In this study, we investigated the effective preparation of active components in Scutellariae Radix using the methods of solvent extraction and absorption fractionation for the development of new functional food or pharmaceuticals. The marker substances, baicalin, baicalein, wogonoside, and wogonin were directly isolated from the Scutellariae Radix. There chemical structures were elucidated by spectroscopic analysis. The Scutellariae Radix was extracted with hot water. To enhance yield of flavonoids in Scutellariae Radix, the hot water extract was dissolved in ethanol with concentration dependent manner. The precipitates were separated using centrifugal techniques at 10,000 rpm. Supernatant liquid was applied to the HPLC for quantification of major compounds. Separately, the hot water extract was absorbed on Diaion HP-20 resin. And then, the absorbed fraction was eluted with methanol for HPLC. The contents of baicalin, baicalein, wogonoside and wogonin in different treatment methods were analyzed by HPLC. Total amount of four major components were 16.9% in 50% ethanol extract, 21.7% in 70% ethanol extract, 20.5% in 90% ethanol extract, and 39.3% in absorbed fraction of Diaion HP-20 resin. In these results, we found that resin absorption method is suitable for the extraction of enriched flavonoids from Scutellariae Radix.

Low-cycle fatigue behaviors of 316L austenitic stainless steel in high temperature water: Effects of pre-soaking, dissolved oxygen, and boric acid & lithium hydroxide

  • Xiong, Yida;Watanabe, Yutaka;Shibayama, Yuki;Zhong, Xiangyu;Mary, Nicolas
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3215-3224
    • /
    • 2022
  • Latest studies found that for 316LN austenitic stainless steel (ASS), its LCF life decreased noticeably in high temperature water containing a great amount of dissolved oxygen (DO) (2 ppm DO), compared with that in the water containing 50 or 100 ppb DO. This finding is different from previous studies about ASSs. This study confirmed that the 316L had similar behavior to 316LN. The LCF life of 316L in water containing 1000 ppb DO water was considerably shorter than that in the water containing 50 ppb DO. Addition of boric acid & lithium hydroxide and pre-soaking did not display noticeable effects on the LCF life of this material in the water with 1000 ppb DO, indicating the discrepancy between the latest studies and previous studies was not caused by the boric acid & lithium hydroxide and pre-soaking. This study also confirmed that similar to 316LN, when a certain amount of DO was added into the water, the amount of hydrogen absorbed into the material decreased significantly compared with that when the DO was less than 5 ppb.

Measurement of Carbonation Depth of Concrete in Old Buildings and Experimental Evaluation of Carbonation Degree and CO2 Absorption Using Differential Thermal Gravimetric Analysis, Part2 (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가, Part2)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.317-318
    • /
    • 2023
  • This study is part of the carbonation degree DB accumulation through quantitative analysis of carbonation depth, Ca(OH)2 and CO2 according to the type of finish and years of use of old concrete structures in order to predict the amount of CO2 that can be absorbed through carbonation of concrete. To this end, the depth of carbonation of the concrete core specimen is measured using an indicator, and the dry amount of water combined with CO2 in the sample is measured using a differential thermal gravimetric analyzer for samples in the carbonation area and non-carbonated area classified by the indicator, and the absorption compared to the weight of the sample. The amount of absorbed CO2 was calculated. In addition, the degree of carbonation was calculated through quantitative comparison of Ca(OH)2 in the carbonation section and non-carbonation section. In the future, we will continue to add the survey and analysis data of dismantled structures and use them as basic data for estimating the amount of carbon dioxide that can be absorbed according to the exposure conditions and years of use by concrete mix.

  • PDF