• Title/Summary/Keyword: amorphous silicon thin-film transistor

Search Result 121, Processing Time 0.029 seconds

Stability of Amorphous Silicon Thin-Film Transistor using Planarized Gate

  • Choi, Young-Jin;Woo, In-Keun;Lim, Byung-Cheon;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.15-16
    • /
    • 2000
  • The gate bias stress effect of the hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with a $SiN_x/BCB$ gate insulator have been studied. The gate planarization was carried out by spin-coating of BCB (benzocyclobutene) on Cr gates. The BCB exhibits charge trappings during a high gate bias, but the stability of the TFT is the same as conventional one when it is between -25 V and +25 V. The charge trap density in the BCB increases with its thickness.

  • PDF

Analysis for Series Resistance of Amorphous Silicon Thin Film Transistor (비정질 실리코 박막 트랜지스터의 직렬 저항에 관한 분석)

  • Kim, Youn-Sang;Lee, Seong-Kyu;Han, Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.951-957
    • /
    • 1994
  • We present a new model for the series resistance of inverted-staggered amorphous silicon (a-Si) thin film transistors (TFT's) by employing the current spreading under the source and the drain contacts as well as the space charge limited current model. The calculated results based on our model have been in good agreements with the measured data over a wide range of applied voltage, gate-to-source and gate-to-drain overlap length, channel length, and operating temperature. Our model shows that the contribution of the series resistances to the current-voltage (I-V) characteristics of the a-Si TFT in the linear regime is more significant at low drain and high gate voltages, for short channel and small overlap length, and at low operating temperature, which have been verified successfully by the experimental measurements.

TWO DIMENSIONAL NUMERICAL SIMULATION PROGRAM FOR HYDROGENATED AMORPHOUS SILICON THIN FILM TRANSISTORS

  • Choi, Jong-S.;Neudeck, Gerold W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.252-257
    • /
    • 1994
  • A non-uniform finite-difference Thin Film Transistor Simulation Program (TFTSP) has been developed for hydrogenated amorphous silicon TFTs. TFTSP was developed to remove as many of simplifying assumptions as possible and to provide flexibility in the modeling of TFTs so that different model assumptions may be analyzed and compared. In order to insure its usefulness and versatility as an analytic and design tool it is important for the code to satisfy a number of conditions. However, at the beginning stage of the program development, this paper shows that the code can compute the static terminal characteristics of a-Si:H TFTs under a wide range of bias conditions to allow for comparison of the model with experiment. Some of those comparisons include transfer characteristics and I-V characteristics. TFTSP will be refined to conveniently model the performances of TFTs of different designs and to analyze many anomalous behaviors and factors of a-Si:H TFTs.

  • PDF

The Effect of Geometric Shape of Amorphous Silicon on the MILC Growth Rate (MILC 성장 속도에 비정질 실리콘의 기하학적 형상이 미치는 영향)

  • Kim Young-Su;Kim Min-Sun;Joo Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.477-481
    • /
    • 2004
  • High quality polycrystalline silicon is very critical part of the high quality thin film transistor(TFT) for display devices. Metal induced lateral crystallization(MILC) is one of the most successful technologies to crystallize the amorphous silicon at low temperature(below $550^{\circ}C$) and uses conventional and large glass substrate. In this study, we observed that the MILC behavior changed with abrupt variation of the amorphous silicon active pattern width. We explained these phenomena with the novel MILC mechanism model. The 10 nm thick Ni layers were deposited on the glass substrate having various amorphous silicon patterns. Then, we annealed the sample at $550^{\circ}C$ with rapid thermal annealing(RTA) apparatus and measured the crystallized length by optical microscope. When MILC progress from narrow-width-area(the width was $w_2$) to wide-width-area(the width was $w_1$), the MILC rate decreased dramatically and was not changed for several hours(incubation time). Also the incubation time increased as the ratio, $w_1/w_2$, get larger. We can explain these phenomena with the tensile stress that was caused by volume shrinkage due to the phase transformation from amorphous silicon to crystalline silicon.

Capacitance Characteristics of a-Si:H Thin Film Transistor (비정질실리콘 박막트랜지스터의 캐패시턴스특성)

  • 정용호;이우선;김남오;이이수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.118-121
    • /
    • 1995
  • Fabrication and a new analytical expression for the capacitance characteristics of hydrogenerated amorphous silicon thin film transistors(a-Si:H TFTs) is presented and experimentally verified. The results show that the experimental capacitance characteristics are easily measeured. Measured transfer and DC output characteristic curves of a-Si:H TFT are similar to those of the standard MOSFET-IC. The capacitances on bias voltages are in good agreement with experimental data. This capacitance characteristics is suitable for incorporation into a circuit simulator and can be used for computer-aided design of a-Si thin film transistor integrated circuits.

  • PDF

Integrated IR Photo Sensor for Display Application (디스플레이 패널에 집적이 가능한 적외선 포토센서)

  • Jeon, Ho-Sik;Heo, Yang-Wook;Lee, Jae-Pyo;Han, Sang-Youn;Bae, Byung-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1164-1169
    • /
    • 2012
  • This paper presents a study of an integrated infrared (IR) photo sensor for display application. We fabricated hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and hydrogenated amorphous silicon germanium thin film transistor (a-SiGe:H TFT) which were bottom gate structure. We investigated the dependence of a-SiGe:H TFT characteristics on incident wavelengths. We proposed photo sensor which responded to wavelengths of IR region. Proposed pixel circuit of photo sensor was consists of switch TFT and photo TFT, and one capacitor. We developed integrated photo sensor circuit and investigated the performance of the proposed sensor circuit according to the input wavelengths. The developed photo sensor circuit with a-SiGe:H TFT was suitable for IR.

The nonvolatile memory device of amorphous silicon transistor (비정질실리콘 박막트랜지스터 비휘발성 메모리소자)

  • Hur, Chang-Wu;Park, Choon-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1123-1127
    • /
    • 2009
  • This paper expands the scope of application of the thin film transistor (TFT) in which it is used as the switching element by making the amorphous silicon TFT with the non-volatile memory device,. It is the thing about the amorphous silicon non-volatile memory device which is suitable to an enlargement and in which this uses the additionally cheap substrate according to the amorphous silicon use. As to, the amorphous silicon TFT non-volatile memory device is comprised of the glass substrates and the gate, which evaporates on the glass substrates and in which it patterns the first insulation layer, in which it charges the gate the floating gate which evaporates on the first insulation layer and in which it patterns and the second insulation layer in which it charges the floating gate, and the active layer, in which it evaporates the amorphous silicon on the second insulation layer the source / drain layer which evaporates the n+ amorphous silicon on the active layer and in which it patterns and the source / drain layer electrode in which it evaporates on the source / drain layer.

Characteristics of low temperature poly-Si thin film transistor using excimer laser annealing (엑시머 레이저를 이용한 저온 다결정 실리콘 박막 트랜지스터의 특성)

  • Kang, Soo-Hee;Kim, Yong-Hoon;Han, Jin-Woo;Seo, Dae-Shik;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.430-431
    • /
    • 2006
  • This letter reports the fabrication of polycrystalline silicon thin-film transistors (poly-Si TFT) on flexible plastic substrates using amorphous silicon (a-Si) precursor films by sputter deposition. The a-Si films were deposited with mixture gas of argon and helium to minimize the argon incorporation into the film. The precursor films were then laser crystallized using XeCl excimer laser irradiation and a four-mask-processed poly-Si TFTs were fabricated with fully self-aligned top gate structure.

  • PDF

New Process Development for Hybrid Silicon Thin Film Transistor

  • Cho, Sung-Haeng;Choi, Yong-Mo;Jeong, Yu-Gwang;Kim, Hyung-Jun;Yang, Sung-Hoon;Song, Jun-Ho;Jeong, Chang-Oh;Kim, Shi-Yul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.205-207
    • /
    • 2008
  • The new process for hybrid silicon thin film transistor (TFT) using DPSS laser has been developed for realizing both low-temperature poly-Si (LTPS) TFT and a-Si:H TFT on the same substrate as a backplane of active matrix liquid crystal display. LTPS TFTs are integrated on the peripheral area of the panel for gate driver integrated circuit and a-Si:H TFTs are used as a switching device for pixel in the active area. The technology has been developed based on the current a-Si:H TFT fabrication process without introducing ion-doping and activation process and the field effect mobility of $4{\sim}5\;cm^2/V{\cdot}s$ and $0.5\;cm^2/V{\cdot}s$ for each TFT was obtained. The low power consumption, high reliability, and low photosensitivity are realized compared with amorphous silicon gate driver circuit and are demonstrated on the 14.1 inch WXGA+ ($1440{\times}900$) LCD Panel.

  • PDF

Capacitive Touch Sensor Pixel Circuit with Single a-InGaZnO Thin Film Transistor (단일 a-InGaZnO 박막 트랜지스터를 이용한 정전용량 터치 화소 센서 회로)

  • Kang, In Hye;Hwang, Sang Ho;Baek, Yeong Jo;Moon, Seung Jae;Bae, Byung Seong
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • The a-InGaZnO (a-IGZO) thin film transistor (TFT) has the advantages of larger mobility than that of amorphous silicon TFTs, acceptable reliability and uniformity over a large area, and low process cost. A capacitive-type touch sensor was studied with an a-IGZO TFT that can be used on the front side of a display due to its transparency. A capacitive sensor detects changes of capacitance between the surface of the finger and the sensor electrode. The capacitance varies according to the distance between the sensor plate and the touching or non-touching of the sensing electrode. A capacitive touch sensor using only one a-IGZO TFT was developed with the reduction of two bus lines, which made it easy to reduce the pixel pitch. The proposed sensor circuit maintained the amplification performance, which was investigated for various drive conditions.