• Title/Summary/Keyword: amorphous powder

Search Result 397, Processing Time 0.023 seconds

Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Gallium nitride (GaN) powders and nanowires were prepared by using tris(N,N-dimethyldithiocarbamato)gallium(III) (Ga(DmDTC)$_3$) and tris(N,N-diethyldithiocarbamato)gallium(III) (Ga(DeDTC)$_3$) as new precursors. The GaN powders were obtained by reaction of the complexes with ammonia in the temperature ranging from 500 to 1100 ${^{\circ}C}$. The process of conversion of the complexes to GaN was monitored by their weight loss, XRD, and $^{71}$Ga magic-angle spinning (MAS) NMR spectroscopy. Most likely the complexes decompose to $\gamma$ -Ga$_2$S$_3$ and then turn into GaN via amorphous gallium thionitrides (GaS$_x$N$_y$). The reactivity of Ga(DmDTC)$_3$ with ammonia was a little higher than that of Ga(DeDTC)$_3$. Room-temperature photoluminescence spectra of asprepared GaN powders exhibited the band-edge emission of GaN at 363 nm. GaN nanowires were obtained by nitridation of as-ground $\gamma$ -Ga$_2$S$_3$ powders to GaN powders, followed by sublimation without using templates or catalysts.

Grain Boundary Chemistry and Electrical Characteristics of Semiconducting $SrTiO_3$ Ceramics Synthesized from Surface-Coated Powders (표면 코팅된 분말을 이용하여 제조된 반도성 $SrTiO_3$ 소결체의 입계화학과 전기적 특성)

  • Park, Myung-Beom;Kim, Chong-Don;Heo, Hyun;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1252-1260
    • /
    • 1999
  • The defect chemistry and electrical characteristics of the grain boundaries of semiconducting SrTiO3 ceramics synthesized with wet-chemically surface-coated powders were investigated. The starting powders were separated into groups of 1-10${\mu}{\textrm}{m}$ 10-20${\mu}{\textrm}{m}$ etc by sedimentation and sieving methods. Na+ ions were absorbed on the powder surfaces by wet chemical-treatment method. The width of the grain boundary ranged up to several nm and the intergranular materials was amorphous. The additives coated on the surface of the powders were observed to be present at the grain boundaries of the ceramics. The diffusion depth of the additives into grains was about 30nm for the SrTiO3 ceramics synthesized with 5w/o coated materials, The threshold voltage grain boundary resistance and boundary potential barrier of the ceramics increased from 0.67V/cm 2.27k$\Omega$ and 0.05eV to 80.9V/cm 13.0k$\Omega$ 1.44eV with increasing the amount of the additives from 0 to 5 w/o respectively .

  • PDF

Amorphous Ultrafine Particle Preparation for Improvement of Bioabailability of Insolube Drugs: Effect of Co-Grinding of UDCA with SLS (난용성 의약품의 생체이용률 증진을 위한 무정형 초미립자의 조제 : UDCA와 SLS의 혼합분쇄 효과)

  • 정한영;곽성신;김현일;최우식
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • The particle size of medicinal materials is an important physical property which affects the pharmaceutical behaviors such as dissolution, chemical stability, compressibility and bioavailability of solid dosage forms. The size reduction of raw pharmaceutical powder is needed to formulize insoluble drugs or slightly soluble drugs and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing and the dispersion. The objective of the present study is to evaluate the grinding characteristics of ursodeoxycholic acid(UDCA) as a model of insoluble drugs. The effects of the grinding time and the amount of additive on particle size distribution of ground UDCA were investigated. Grinding of insoluble drug, UDCA and a series of dry co-grinding experiments of UDCA with sodium lauryl sulfate(SLS) as an additive were carried out using a planetary ball mill. It was measured that the median diameter and the particle size distribution of ground products with grinding UDCA and additive SLS by Mastersizer. As a result of co-grinding of UDCA and SLS, the particle size of co-grinding products was decreased more than single grinding one. However, it was observed that co-grinding products were reaggregated to larger particles after 120 min.

Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst

  • Jung, Tae-Sung;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.449-453
    • /
    • 2009
  • A mesoporous assembly of layered titanate with well-dispersed Pt cocatalysts has been synthesized via a restacking of exfoliated titanate nanosheets and a simultaneous adsorption of Pt nanoparticles. According to powder X-ray diffraction analysis, the obtained mesoporous assembly shows amorphous structure corresponding to the disordered stacking of layered titanate crystallites. Field emission-scanning electron microscopy and $N_2$ adsorption-desorption isotherm measurement clearly demonstrate the formation of mesoporous structure with expanded surface area due to the house-of-cards type stacking of the titanate crystallites. From high resolution-transmission electron microscopy and elemental mapping analyses, it is found that Pt nanoparticles with the size of ~2.5 nm are homogeneously dispersed in the mesoporous assembly of layered titanate. In comparison with the protonated titanate, the present mesoporous assembly of layered titanate exhibits better photocatalytic activity for the photodegradation of organic molecules. This finding underscores that the restacking of exfoliated nanosheets is quite useful not only in creating mesoporous structure but also in improving the photocatalytic activity of titanium oxide.

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Synthesis and Mechanical Properties of Mullite-PSZ Composites by Sol-Gel Process (Sol-Gel법에 의한 Mullite-PSZ 복합체의 제조 및 특성에 관한 연구)

  • 최용식;박일주;이경희;이병하;김영호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.399-405
    • /
    • 1991
  • Mullite-PSZ powders were synthesized by the sol-gel process using Al(sec-OC4H9)3, Si(OC2H5)4, ZrOCl2$.$8H2O and YCl3 solution and the characteristics of synthesized powders were studied. The sinterability and mechanical properties of powder compacts sintered at 1670$^{\circ}C$ for 4hr were also studied for various PSZ contents. ${\gamma}$-Al2O3(Al-Si spinel) formed at 980$^{\circ}C$ from amorphous dried gel, and mullite as well as ZrO2 formed above 1200$^{\circ}C$. At the room temperature, ZrO2 was a mixture of tetragonal and monoclinic phases. The specimens were densified to 97∼98% except the specimen containing 25 vol% PSZ which showed the relative density of 94%. The K1c value increased with the PSZ content and showed a maximum value of 4.1 MN/m3/2 at 25 vol% PSZ; this value was about 50% higher than that of the mullite without PSZ. Flexural strength had a maximum value of 280 Mn/㎡ at 20 vol% PSZ. In contrast, at 25 vol%, the flexural strength was even lower than that of the mullite possibly due to higher porosity of 6%.

  • PDF

The Preparation of Blue CoAl2O4 Powders by the Malonate Method: The Effect of the Amount of Malonic Acid Used, the Formation Pathway of CoAl2O4 Crystallites and the Characteristics of the Prepared Powders

  • Lee, Gong-Yeol;Ryu, Kwang-Hyun;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.373-377
    • /
    • 2009
  • A pathway for the formation of normal $CoAl_2O_4$ particles is suggested. The optimal amount of malonic acid was determined, and the characteristics of the obtained powders were investigated. Normal $CoAl_2O_4$ powders were prepared using solutions of malonic acid and metal nitrates. X-ray diffraction, Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM) measurements, as well as Fourier transform infrared (FTIR) and ultraviolet/visible (UV-Vis) spectroscopy were carried out. Normal $CoAl_2O_4$ crystallites were formed by a solid state reaction between $CoAl_2O_4$ and amorphous aluminum oxide. The optimal molar ratio of malonic acid to the nitrate anions present in the initial solution was found to be 0.30~0.35. The particles were composed of agglomerates of primary particles. The primary particles were 40 nm in size. This size was relatively constant regardless of the preparation temperature. However, the size of the agglomerated particles increased to 220 nm with increasing temperature.

Characterization of Cordierite by XPS (Ⅰ) (XPS에 의한 코디에리트의 특성 연구 (연구Ⅰ))

  • Han, Byoung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.124-129
    • /
    • 1989
  • The cordierite is of great interest for microelectronic packaging. Its main advantages are low dielectric constant and low thermal expansion. The cordierite precursor obtained by sol-gel synthesis whose sintering temperature is about $900^{circ}C$ is an amorphous and cristal white powder. Green and fired cordierite samples were studied by XPS for microscopic properties. At the surface the results of XPS show forte diminution of Mg in comparison with its value at volume and the deficit of Mg compensates by augmentation of Al and Si. $pi$-cordierite phase is present near the surface $<100{\AA}$ and small quantities of magnesium aluminate ($MgAl_2O_4) is present in the bulk. Sintering of the green cordierite introduces no chemical modification at the surface.

  • PDF

Preparation of Gallium Nitride Powders and Nanowires from a Gallium(III) Nitrate Salt in Flowing Ammonia

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.51-54
    • /
    • 2004
  • Gallium nitride (GaN) powders were prepared by calcining a gallium(III) nitrate salt in flowing ammonia in the temperature ranging from 500 to 1050 $^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-ray diffraction and $^{71}Ga$ MAS (magic-angle spinning) NMR spectroscopy. The salt decomposed to ${\gamma}-Ga_2O_3$ and then converted to GaN without ${\gamma}-{\beta}Ga_2O_3$ phase transition. It is most likely that the conversion of ${\gamma}-Ga_2O_3$ to GaN does not proceed through $Ga_2O$ but stepwise via amorphous gallium oxynitride ($GaO_xN_y$) as intermediates. The GaN nanowires and microcrystals were obtained by calcining the pellet containing a mixture of ${\gamma}-Ga_2O_3$ and carbon in flowing ammonia at 900 $^{\circ}C$ for 15 h. The growth of the nanowire might be explained by the vapor-solid (VS) mechanism in a confined reactor. Room-temperature photoluminescence spectra of as-synthesized GaN powders obtained showed the emission peak at 363 nm.

Synthesis of Powder of the System Si-Al-O-N from Alkoxides I. Synthesis of Si3N4 and $\beta$-Sialon Ultrafine Powders from Alkoxides (알콕사이드로부터 Si-Al-O-N계 분말합성 I. 알콕사이드로부터 Si3N4와 $\beta$-Sialon 초미분말 합성)

  • 이홍림;유영창
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.23-32
    • /
    • 1987
  • Synthesis of high purity ultrafine Si3N4 and ${\beta}$-Sialon powders was investigated via the simultaneous reduction and nitriding of amorphous SiO2, SiO2-Al2O3 system prepaerd by hydrolysis of alkoxides, using carbonablack as a reducing agent. In Si(OC2H5)4-C2H5 OH-H2 O-NH4OH system, hydrolysis rate increased with increasing reaction temperature and pH. Pure ${\alpha}$-Si3N4 was formed at 1350$^{\circ}C$ for 5 hrs in N2 atmosphere. In Si(OC2H5)4-Al(OC3H7)3-C6H6-H2 O-NH4OH system, weight loss increased as Si/Al ratio decreased. Single phase ${\beta}$-Sialon consisted of Si/Al=2 was formed at 1350$^{\circ}C$ in N2 and minor phases of ${\alpha}$-Si3N4, AIN, and X-phase were existed besides theSialon phase at other Si/Al ratios. The Si3N4 and Sialon powders synthesized from alkoxides consisted of uniform find particles of 0.05-0.2$\mu\textrm{m}$ in diameter, respectively.

  • PDF