• Title/Summary/Keyword: amorphous powder

Search Result 397, Processing Time 0.028 seconds

Synthesis of Yttria Stabilized Zirconia by Sol-gel Precipitation Using PEG and PVA as Stabilizing Agent

  • Bramhe, Sachin N.;Lee, Young Pil;Nguyen, Tuan Dung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.441-446
    • /
    • 2013
  • There is increasing interest in zirconia as a dental material due to its aesthetics, as well as the exceptionally high fracture toughness and high strength that are on offer when it is alloyed with certain oxides like yttria. In recent years, many solution based chemical synthesis methods have been reported for synthesis of zirconia, of which the sol-gel method is considered to be best. Here, we synthesize zirconia by a sol gel assisted precipitation method using either PEG or PVA as a stabilizing agent. Zirconia sol is first synthesized using the hydrothermal method. We used NaOH as the precipitating agent in this method because it is easy to remove from the final solution. Zirconium and yttrium salts are used as precursors and PEG or PVA are used as stabilizers to separate the metal ions. The resulting amorphous zirconia powder is calcined at $900^{\circ}C$ for 2 h to get crystallized zirconia. XRD analysis confirmed the partially stabilized zirconia synthesis in all the synthesized powders. SEM was taken to check the morphology of the powder synthesized using either PEG or PVA as a stabilizing agent and finally the transparency was calculated. The results confirmed that the powder synthesized with 10 % PVA as the stabilizing agent had highest percentage of transparency among all the synthesized powder.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Preparation of NiO Coated YSZ Powder for Fabrication of an SOFC Anode (SOFC 음극 제조를 위한 NiO가 코팅된 YSZ 분말의 합성)

  • Lim, Kwang-Young;Han, In-Dong;Sim, Soo-Man;Park, Jun-Young;Lee, Hae-Won;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.781-787
    • /
    • 2006
  • NiO-coated YSZ powder was prepared using heterogeneous precipitation of Ni hydroxides on YSZ particle surface and high energy milling. The powders were characterized by TG/DTA, XRD, XPS, and SEM. Amorphous Ni precipitate completely decomposed into NiO at $500^{\circ}C$ and the growth of NiO crystallites was constrained by the core particles. Nanocrystalline NiO-coated YSZ core-shell structure powder could be obtained after calcination at $800^{\circ}C$ for 2 h. A core-shell powder compact, due to high sinterability, showed a near theoretical density at $1350^{\circ}C$. After reduction at $900^{\circ}C$, interpenetrating Ni-YSZ microstructure with very uniformly distributed fine Ni and YSZ grains and pores was observed. In contrast, the mechanically mixed oxide sample showed less uniform distribution of pores and larger discontinuous We particles as compared with the core-shell samples.

Preparation of electrostatic spray pyrolysis derived nano powder and hydroxyapatite forming ability (정전분무 열분해법에 의한 나노분말의 제조 및 하이드록시 아파타이트 형성능력 평가)

  • Lee, Young-Hwan;Jeon, Kyung-Ok;Jeon, Young-Sun;Lee, Ji-Chang;Hwang, Kyu-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.244-249
    • /
    • 2006
  • Electrostatic spray pyrolysis, a novel fabrication technique, has been used in this study to prepare calcium phosphate nano powders. Final annealing was done at $400^{\circ}C$ for 30min in air. The hydroxyapatite - forming ability of the annealed powder has been evaluated in Eagle's minimum essential medium solution (MEM). X-ray diffraction analysis, field emission - scanning electron microscope, energy dispersive X-ray spectroscope, and Fourier transform infrared spectroscope were used to characterized the annealed powders after immersion in MEM. The powder with an amorphous structure induced hydroxyapatite formation on their surfaces after immersion fer 15 days.

Synthesis of $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ Powder by Ultrasonic Spray Pyrolysis (초음파 분무열분해를 이용한 $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ 분말의 합성)

  • 박양수;심수만
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1171-1181
    • /
    • 1998
  • $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ powder was synthesized by ultrasonic spray pyrolysis using a solution that Sr carbonate and Zr and Y nitrates were dissolved in a citric acid solution. The processes of particle formation were in-vestigated with respect to solution properties and pyrolysis temperature. With changing the solution con-centration form 0.1M to 0.01M there was a tendency that average sizes of droplets and particles were de-creased and their size distributions were narrowed. Citrate functional groups converted the droplets into gel particles which prevented an inhomogeneous precipitation of the metal ions and facilitated the diffusion of gases during thermal decomposition. As a result the powder having spherical particles without hollow par-ticles could be prepared. Low pyrolysis temperature led to amorphous particles due to incomplete pyrolysis and made the particles difficult to maintain spherical shape due to retarded gelation of the droplets. Whereas higher pyrolysis temperature produced hollow and broken particles because the droplets un-derwent rapid gelationand decomposition. The particles obtained at two pyrolysis temperature $500^{\circ}$and $1000^{\circ}C$ consisted of a perovskite phase and a very small amount of $SrCO_3$ However after calcination at $1000^{\circ}C$ the particles contained a single perovskite phase having an average particle size of 0.63${\mu}{\textrm}{m}$ and an apparent density near to the theoretical density.

  • PDF

Electromagnetic Wave Absorption Properties of Fe-based Nanocrystalline P/M sheets with Al2O3 additive (Al2O3 첨가에 따른 Fe계 나노결정립 P/M시트의 전자파 흡수특성)

  • Woo, S.J.;Cho, E.K.;Cho, H.J.;Lee, J.J.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric $Al_{2}O_{3}$ powders and binders. As a result, the addition of $Al_{2}O_{3}$ powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% $Al_{2}O_{3}$ powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder.

Physico-mechanical, AC-conductivity and microstructural properties of FeCl3 doped HPMC polymer films

  • Prakash, Y.;Somashekarappa, H.;Manjunath, A.;Mahadevaiah, Mahadevaiah;Somashekar, R.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2013
  • The transition metal salt doped solid polymer electrolyte [TSPE] were prepared with HPMC as a host polymer. The virgin and doped films were prepared by solution-casting method and investigated using wide angle X-ray scattering method. Micro structural parameters like lattice strain (g%), stacking/twin faults, the average number of unit cells counted in a direction perpendicular to the Bragg's plane (hkl) spacing of (hkl) planes dhkl, crystallite size Ds, distortion width, standard deviation were determined by whole pattern powder fitting (WPPF) method, which is an extension of single order method. It is found that the crystallite size decreases with the increase in the content of $FeCl_3$. This decrease is due to increase in localized breaking of polymer network which also accounts for the amorphous nature of the material. The filler inorganic salt $FeCl_3$ acts as plasticizer. FTIR study also confirms and justifies the interaction between the polymer and in-organic salt in the matrix. Physical properties like mechanical stability and Ac conductivity in these films are in conformity with the X-ray results.

DR (Digital Radiography) 적용을 위한 Biology 초음파 특수용매를 이용한 $PbI_2$ 합성법

  • Kim, Seong-Heon;Yun, Min-Seok;O, Gyeong-Min;Kim, Yeong-Bin;Lee, Sang-Hun;Jo, Gyu-Seok;Park, Hye-Jin;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.146-146
    • /
    • 2009
  • 최근에 광도전체와 형광체를 기반으로 평판형 디지털 방사선 검출기의 상업적 발전가능성에 많은 관심을 가지고 있다. 본 연구는 기존의 직접변환방식에 널리 사용되었던 비정질 셀레늄 (amorphous selenium) 기반의 디지털 방사선 검출기보다 높은 전기적신호 및 동작특성을 가지는 물질층을 제작하기 위해 High Purity (99.99%)의 상용화된 $PbI_2$를 특수용매에 담가두었다가 약 1시간동안 Biology 초음파 처리한 후 농축기를 사용하여 건조된 $PbI_2$를 3Roll-milling을 사용하여 미세크기의 Powder를 얻어내었다. 합성된 $PbI_2$ Powder를 PIB(Particle-in-Binder)법을 이용하여 전도성을 가진 ITO(Indium-tin-oxide)코팅된 유리판에 제작된 필름의 상부에 Magnetron sputtering system 을 사용하여 전극을 $1cm{\times}1cm$의 크기로 증착하였다. I-V 테스트를 통하여 X선 조사시 $PbI_2$필름의 Sensitivity, Dark current, SNR(signal-to-noise ratio)을 측정하여 필름의 전기적 검출 특성을 정량적으로 평가하였고 SEM(scanning electron microscope)을 통하여 입자의 크기를 관찰하였다.

  • PDF

Tb3+ and Ce3+ Intercalated Laponite Powder: The Influence of Ce3+ Ions on Thermal Stability and Optical Properties of Tb3+ Intercalated Laponite

  • Lee, Han-Na;Kim, You-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1273-1276
    • /
    • 2011
  • Laponite samples intercalated with $Tb^{3+}$ or $Tb^{3+},Ce^{3+}$ ions were prepared by exchange of Na+ ions in interlayers with $Tb^{3+}$ or $Ce^{3+}$ ions. Strong green and weak blue emissions under vacuum ultraviolet (VUV) excitation (${\lambda}$ = 158 nm) were observed due to the $^5D_4{\rightarrow}^7F_J$ and $^5D_3{\rightarrow}^7F_J$ emission lines, respectively. $Tb^{3+}$ ions in an interlayer of laponite mainly existed in ion pairs or clusters, as evidenced by the concentration-dependent luminescence of the $Tb^{3+}$ ions on the relative intensities of the $^5D_3{\rightarrow}^7F_J$ and the $^5D_4{\rightarrow}^7F_J$ emission lines, due to the action of a cross-relaxation process. The addition of $Ce^{3+}$ ions increased the thermal stability of $Tb^{3+}$ intercalated laponite up to $650^{\circ}C$ and quenched the $^5D_3{\rightarrow}^7F_J$ emission lines, probably by promoting the formation of $Tb^{3+}$ ion pairs at relatively low $Tb^{3+}$ concentrations.

Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation (화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조)

  • Lee Jung-Han;Kim Sung-Duk;Kim Jin-Chun;Choi Chul-Jin;Lee Chan-Gyu
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.