• Title/Summary/Keyword: amorphous magnetic film

Search Result 99, Processing Time 0.027 seconds

Preparation and Magnetic Properties of Co-system Amorphous Thin Film by the Sputter method (스파터법에 의한 Co-계 비정질박막의 제작과 자기특성)

  • 임재근;문현욱;서강수;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.190-191
    • /
    • 1994
  • In this paper, We study on the fabrication of amorphous this film of zeromagnetostriction material and the magnetic properties. This films are fabricated by using sputtering method with input power of 400∼607[W], Ar gas pressure of 3∼ 9[mTorr] and target composition of Fe$\sub$4.7/ Co$\sub$74.3/Si$_2$B$\sub$19/. Sample this films with diameter of 14[mm ] and thickness of 27-30[$\mu\textrm{m}$] were obtained through experiments. When we analyzed the magnetic properties before and after annealing with sample thin films, we confirmed that magnetic domain wall amorphous thin films consisted for Neel magnetic domain wall with the width of about 1[$\mu\textrm{m}$].

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in (Fe1-xCox)89Zr11 Amorphous Films (II) ((Fe1-xCox)89Zr11 비정질 자성막에서의 자기표면탄성파 속도변화(II))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.279-282
    • /
    • 2002
  • The effect of field annealing on the velocity changes of magneto surface acoustic wave (MSAW) devices has been investigated for deposited $(Fe_{1-x}Co_x)_{89}Zr_{11}$ (x = 0~1.0) amorphous films. By means of two step field annealing at $195^{\circ}C$ for 10 minute in the magnetic field of 130 Oe, the MSAW device with x=0.4 film among the devices showed the superior velocity change of 0.1 %. This gigantic value was obtained in the DC bias field of 40 Oe at the exciting frequency of 8.7 MHz. It was confirmed that such behavior was due to the variation of differential permeability caused by an optimal stress within the magnetic film.

Fabrication and Properties of Thin-Film Inductors with Magnetic Core (박막 자심 인덕터의 제조와 특성)

  • Kim, Hyun-Sik;Min, Bok-Ki;Byun, Woo-Bong;Kim, Ki-Uk;Song, Jae-Sung;Oh, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1314-1316
    • /
    • 1997
  • In this study, We fabricated thin film magnetic core inductors by using thin film manufacturing techniques such as photolithography and wet etching process. The inductors were prepared using multi-layered CoNbZr/Cu/CoNbZr. These devices are measured at high frequency range of $1\;MHz{\sim}1\;GHz$.

  • PDF

Magnetic and Magnetostrictive Properties of Amorphous Sm-Fe and Sm-Fe-B Thin Films

  • Choi, Y.S.;Lee, S.R.;Han, S.H.;Kim, H.J.;Lim, S.H.
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.55-63
    • /
    • 1998
  • Magnetic and magnetostrictive properties of amorphous Sm-Fe and Sm-Fe-B thin films are systematically investigated over a wide composition range from 14.1 to 71.7 at.% Sm. The films were fabricated by rf magnetron sputtering using a composite target composed of an Fe (or Fe-B) plate and Sm chips. The amount of B added ranges from 0.3 to 0.8 at. %. The microstructure, examined by X-ray diffraction, mainly consists of an amorphous phase in the intermediate Sm content range from 20 to 45 at.%. Together with an amorphous phase, crystalline phases of Fe and Sm also exist at low and high ends of the Sm content, respectively. Well-developed in-plane anisotropy is formed over the whole compositionrange, except for the low Sm content below 15 at.% and the high Sm content above 55 at %. As the Sm content increases, the saturation magnetization decreases linearly and the coercive force tends to increase, with the exception of the low Sm content where very large magnitudes of the saturation magnetization and the coercive force are observed due to the existence of the crystalline $\alpha$-Fe phase. The coercive force is affected rather substantially by the B addition, resulting in lower values of the coercive force in the practically important Sm content range of 30 to 40 at.%. Good magnetic softness indicated by well-developed in-plane anisotropy, a square-shaped hysteresis loop and a low magnitude of the coercive force results in good magnetostrictive characteristics in both Sm-Fe-B thin films. The magnetostrictive characteristics, particularly at low magnetic fields, are further improved by the addition of B; for example, at a magnetic field of 100 Oe, the magnitude of magnetostriction is -350 ppm in a Sm-Fe thin film and it is -470 ppm in a B containing Sm-Fe thin film.

  • PDF

FERROMAGNETIC RESONANCE STUDIES IN AMORPHOUS Co-Zr FILMS

  • Kim, Y.Y.;Baek, J.S.;Lee, S.J.;Lim, W.Y.;Yu, S.C.;Lee, S.H.;Jang, P.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.528-532
    • /
    • 1995
  • Ferromagnetic resonance experiments have been used to investigate the magnetic properties of amorphous $Co_{89.5}Zr_{10.5}$ thin films deposited by DC magnetron sputtering method. In the thickness range from $350\;{\AA}$ to $3,200\;{\AA}$, measurements were carried out in a static magnetic field perpendicular and parallel to the film plane and in a conventional 9.44 GHz spectrometer at room temperature. The ferromagnetic resonance spectra by the field perpendicular to the film plane showed standing spin wave. The spacing and the relative intensities between the various spin wave resonance peaks are analysed considering surface magnetic anisotropy. The surface magnetic anisotropy constant ($K_{so},\;K_{sd}$) of amorphous $Co_{89.5}Zr_{10.5}$ thin films are $0.02\;erg/\textrm{cm}^2$ and $0.55\;erg/\textrm{cm}^2$ respectively regardless of the film thickness except for $3,200\;{\AA}$ film. In case of $3,200\;{\AA}$ these values are $0.46\;erg/\textrm{cm}^2$ and $0.55\;erg/\textrm{cm}^2$ respectively.

  • PDF

Magnetic properties of Co-Cr(-Ta)/Si bilayered thin film (Co-Cr(-Ta)/Si 이층막의 자기적 특성)

  • 김용진;박원효;금민종;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.100-103
    • /
    • 2001
  • In order to investigate the magnetic properties of CoCr-based bilayered thin films on kind of underlayer, we introduced amorphous Si layer to Co-Cr(-Ta) magnetic layer as underlayer. With the thickness of CoCr, CoCrTa single layer, crystalline orientation and perpendicular coercivity was improved. It was revealed that by introducing the Si underlayer, the c-axis orientation of CoCr, CoCrTa magnetic layer was improved largely. However, with increasing Si film thickness, perpendicular coercivity and saturation magnetization of Cocr/si, CoCrTa/Si bilayered thin films was decreased. Grain size of bilayered thin films became larger.

  • PDF

The Effected of Amorphous Si Underlayer to Crystallographic Characteristics for Prepared Perpendicular Magnetic Recording Media Thin Film (수직자기기록용 박막의 제작에 있어서 아몰퍼스 실리콘 하지층이 결정학적 특성에 미치는 영향)

  • 박원효;김용진;손인환;가출현;박창옥;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.463-465
    • /
    • 2002
  • In order to increase perpendicular magnetic anisotropy of magnetic layer and prepare magnetic recording layer with a good quality by epitaxial growth between magnetic layer and, we prepared Co$\_$77/Cr$\_$20/Ta$_3$/Si doublelayer for perpendicular magnetic recording media which was promoted as next generation recording media on slide glass substrate. The thickness of magnetic layer and Underlayer were varied from 20 to 100 nm and 5 to 100 m, respectively. The surface morphology and crystal structure of the CoCrTa/Si film were examined with XRD and AFM. Prepared thin films showed improvement of dispersion angle of c-axis orientation Δ$\theta$$\_$50/ caused by inserting amorphous Si underlayer.

  • PDF

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • Park, W.H.;Kim, Y.J.;Keum, M.J.;Ka, C.H.;Son, I.H.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta\theta_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 200Oe. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.

  • PDF

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I) ($({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.477-482
    • /
    • 2001
  • The velocity changes of magneto surface acoustic wave (MSAW) have been investigated in the MSAW devices composed of wedge type transducer and as-sputtered ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0)amorphous films on glass substrates. The velocity changes of devices depended sensistively on exciting frequency of MSAW, applying the DC bias magnetic field. film thickness and film composition. Particularly. it was conformed that velocity changes increased with the increase of the exciting frequency of MSAW and the thickness of magnetic films. A device deposited x= 0.8 film along the MSAW propagation direction among the devices exhibited a large velocity change of 0.062% at 8.7 MHz for the applied field of 70 Oe.

  • PDF