• Title/Summary/Keyword: amorphous ice

Search Result 12, Processing Time 0.026 seconds

Vertical Diffusion of Ammonia Into Amorphous Ice Sturcture

  • Kim, Yeong-Sun;Mun, Ui-Seong;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.280-280
    • /
    • 2012
  • We examined ammonia diffusion on the surface of amorphous ice film through the measurement of decreasing residual quantity of $NH_3$ molecules compared to $H_2O$. The populations of $NH_3$ molecules on the surface of amorphous ice were monitored by using the techniques of temperature programmed reactive ion scattering (TPRIS) method. The ratio of intensity between ammonia and water was examined as a function of time at controlled temperature. When ammonia molecules were externally added onto an ice film at a temperature of 80 K, ammonia coverage with regard to ice was 0.12-0.16 ML. The intensity of ammonia molecules on the surface of ice decreased as time increased and the extent of decreased intensity of ammonia increased as controlled temperature increased. Moreover, energy barrier was estimated to be $51kJmol^{-1}$ on amorphous ice film. The results of the experiment indicate that ammonia molecules have a property of vertical diffusion into amorphous ice and the energy barrier of ammonia diffusion into bulk of ice is higher than that of hydrogen bonding.

  • PDF

Vertical Transport of Protons in Amorphous Ice

  • Moon, Eui-Seong;Kim, Young-Soon;Shin, Sung-Hwan;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.279-279
    • /
    • 2012
  • In order to estimate the average migration lengths of $H_3O^+$ ions in amorphous ice, we conducted experiments of reactive ion scattering (RIS), low energy sputtering (LES), and reflection absorption IR spectroscopy (RAIRS) with an ultra-high vacuum (UHV) chamber. Dopped water-ice films were grown on the clean surface of Ru single crystal and analyzed with RIS, LES and RAIRS methods. The population changes of probe molecules, which were buried at a controlled distance from the surface, were monitored by those methods so that we can mesure the migration efficiencies. From the measured efficiencies, we evaluated the average migration lengths. This result is expected to give the information about the dynamics of proton in water-ice film.

  • PDF

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

Characterization of Black Carbon Collected from Candle Light and Automobile Exhaust Pipe

  • Cho, Seo-Rin;Cho, Han-Gook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.691-696
    • /
    • 2013
  • Black carbon contributes to global warming and melting of polar ice as well as causing respiratory diseases. However, it is also an inexpensive, easily available carbon nano material for elementary chemistry experiments. In this study, black carbon samples collected from candle light and automobile exhaust pipes have been investigated to examine their compositions and surface characteristics. The observed broad G and D bands and amorphous $sp^3$ band in their Raman spectra as well as the high intensity of the D (defect) band reveal that black carbon is principally made of amorphous graphite. The black carbon deposits in automobile exhaust pipes are apparently more amorphous, probably due to the shorter time allowed for formation of the carbonaceous matter. An exceptionally large water contact angle ($159.7^{\circ}$) is observed on black carbon, confirming its superhydrophobicity. The surface roughness evidently plays an important role for the contact angle much larger than that of crystalline graphite ($98.3^{\circ}$). According to the Sassie-Baxter equation, less than 1% the area actually in contact with the water drop.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Infrared spectroscopy of the effect of metal electrode on adsorbate under electric field: Electrochemical model study of CO on Pt(111) with ice film capacitor method in ultrahigh vacuum

  • Kang, Hani;Shin, Sunghwan;Park, Youngwook;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.143.2-143.2
    • /
    • 2016
  • The influence of electric field on CO adsorbed on Pt(111) was investigated with reflection-absorption infrared spectroscopy (RAIRS) in ultrahigh vacuum system. The ice film capacitor method was used to apply electric field to the amorphous ice film with CO on Pt(111). Two systems were compared by measuring the change of the CO stretching vibrational mode under applied electric field; one is CO on Pt(111), and the other is CO buried inside an ice film on Pt(111). By comparing them, we were able to calculate the additional effect of adsorption of CO on Pt(111) on peak shift. The CO adsorbed on Pt(111) has shown larger peak shift than CO adsorbed with H2O when we applied stronger electric field. Additionally, the differences were observable when the applied electric field exceeds $1{\times}10V/m^8$.

  • PDF

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.

Why Comets Exhibit Outbursts? A Lesson from Holmes and its Miniature

  • Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2014
  • Comets are mysterious travelers from outer Solar System. It is considered that comets loose their subsurface ice once they were injected into a snow-line of the solar system, at the same time, develop adiathermic dust layers on the surface in a time scale of ~10,000 years. They eventually become inactive (see also the presentation by Yoonyoung Kim et al.). Optical similarity between comets and asteroids in comet-like orbits suggests the existence of such dormant or inactive comets supporting the evolutionary scenario. However, unforeseen accidents cast a misgiving to modify the stereotype. A periodic comet, 17P/Holmes, is known as comet with very low activity before 2007. However, the comet suddenly exhibited an outburst in 2007 October, which is known as the most energetic cometary outburst since the beginning of modern astronomy. On the other hand, another periodic comet, P/2010 V1, was not known before 2010 November probably because of low activity and discovered while it experienced outburst. We investigated the time-evolution of the magnitudes and the morphological developments based on the dynamical theory of dust grains, and derived the energy per unit mass of ~10,000 J/kg. From these observational evidences, we suggest that crystallization of buried amorphous ice (even in low-activity comets) can be responsible for the dramatic cometary outbursts.

  • PDF

A study on the Dynamic Mechanical and Dielectric Loss according to Quenched Condition in Low Density Polyethylene fer Power Cable (전력 케이블용 저밀도 폴리에틸렌의 냉각 조건에 따른 기계적 및 유전손실에 관한 연구)

  • 김재환;권병휘;박재준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.5
    • /
    • pp.27-37
    • /
    • 1992
  • We studied the dielectric and dynamic mechanical losses according to the quenching condition in low density polyethylene being used to power cables. According to severe quenching condition, characteristics of the temperature in internal friction los peak have decreased the magnitude of loss peak as amorphous region lengthen. From now on, the frequency dependent characteristics of dielectric loss have investigated at room temperature, and the dielectric loss peak due to interface polarization, between crystal and amorphous region, occurs about 30[Hz], and that, the peak due to orientation polarization in correspondence to the loss peak in internal friction has observed at about 3 [MHz]. As quenching velocity increased, the effect on quenching condition about the dielectric loss has decreased the magnitude of the loss peak. Thus, estimation has been carried out on the activation energies nd the degree of crystallinity by means of X-ray diffraction are obtained as follows: room quenching : 26.4 [kal/mole] and 54.73 [%], ice quenching : 25.6 [kcal/mole] and 48.47 [%], liquid nitrogen quenching specimens : 22.56 [kcal/mole] and 40.95 [%].

  • PDF

DUST AROUND HERBIG AE/BE STARS

  • Suh, Kyung-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • We model dust around Herbig Ae/Be stars using a radiative transfer model for multiple isothermal circumstellar dust shells to reproduce the multiple broad peaks in their spectral energy distributions (SEDs). Using the opacity functions for various types of dust grains at different temperatures, we calculate the radiative transfer model SEDs for multiple dust shells. For eight sample stars, we compare the model results with the observed SEDs including the Infrared Space Observatory (ISO) and AKARI data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around Herbig Ae/Be stars. We find that at least four separate dust components are required to reproduce the observed SEDs. For all the sample stars, two innermost dust components (a hot component of 1000-1500 K and a warm component of 300-600 K) with amorphous silicate and carbon grains are needed. Crystalline dust grains (corundum, forsterite, olivine, and water ice) are needed for some objects. Some crystalline dust grains exist in cold regions as well as in hot inner shells.