• Title/Summary/Keyword: amorphous Fe

Search Result 574, Processing Time 0.026 seconds

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

Low Temperature Synthesis of the Microwave Dielectric (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 Nano Powders by the Metal-citrate Process (Metal-citrate Process를 이용한 마이크로파 유전체용 (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 나노 분말의 저온 합성)

  • Lee, Dong-Wook;Won, Jong-Han;Shim, Kwang-Bo;Kang, Seung-Gu;Hyun, Boo-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1113-1118
    • /
    • 2002
  • Nano sized $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Nb_{0.5})O_3$ (PCFN) powders with the stoichiometric composition and the uniform size distribution were successfully synthesized by the metal-citrate process through the calcination of the polymeric precursor which consisted of the metal ions and the organic network. The crystallization of the initial amorphous powders began at $400{\circ}$ and completed at $700{\circ}$. The pyrochlore phase was detected caused by the dissociation of PbO above $900{\circ}$. Single phase perovskite PCFN powders with 40 nm size and uniform shape were obtained through the calcination at $700{\circ}$.

Influence of Iron Phases on Microbial U(VI) Reduction

  • Lee, Seung-Yeop;Baik, Min-Hoon;Lee, Min-Hee;Lee, Young-Boo;Lee, Yong-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.58-65
    • /
    • 2011
  • The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.

Electromagnetic Wave Absorption Properties of Fe-based Nanocrystalline P/M sheets with Al2O3 additive (Al2O3 첨가에 따른 Fe계 나노결정립 P/M시트의 전자파 흡수특성)

  • Woo, S.J.;Cho, E.K.;Cho, H.J.;Lee, J.J.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric $Al_{2}O_{3}$ powders and binders. As a result, the addition of $Al_{2}O_{3}$ powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% $Al_{2}O_{3}$ powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder.

Microstructure, Hardness, and Fracture Toughness of Surface Composites Fabricated by High-Energy Electron-Beam Irradiation of Fe-Based Metamorphic Alloy Powders and VC Powders (철계 반비정질 합금 분말과 VC 분말을 고에너지 전자빔으로 투사하여 제조된 표면복합재료의 미세조직, 경도, 파괴인성)

  • Nam, Duk-Hyun;Do, Junghyun;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.634-645
    • /
    • 2008
  • In this study, surface composites were fabricated with Fe-based amorphous alloy powders and VC powders by high-energy electron beam irradiation, and the correlation of their microstructure with hardness and fracture toughness was investigated. Mixture of Fe-based metamorphic powders and VC powders were deposited on a plain carbon steel substrate, and then electron beam was irradiated on these powders without flux to fabricate surface composites. The composite layers of 1.3~1.8 mm in thickness were homogeneously formed without defects and contained a large amount (up to 47 vol.%) of hard $Cr_2B$ and $V_8C_7$ crystalline particles precipitated in the solidification cell region and austenite matrix, respectively. The hardness of the surface composites was directly influenced by hard $Cr_2B$ and $V_8C_7$ particles, and thus was about 2 to 4 times greater than that of the steel substrate. Observation of the microfracture process and measurement of fracture toughness of the surface composites indicated that the fracture toughness increased with increasing additional volume fraction of $V_8C_7$ particles because $V_8C_7$ particles effectively played a role in blocking the crack propagation along the solidification cell region heavily populated with $Cr_2B$ particles. Particularly in the surface composite fabricated with Fe-based metamorphic powders and 30 % of VC powders, the hardness and fracture toughness were twice higher than those of the surface composite fabricated without mixing of VC powders.

Effects of Co/Fe Sulfate Pigments on the Colour and Phase of Porcelain (Co/Fe 황화물의 혼합안료에 의한 도자기 표면의 상형성과 색변화)

  • Kim, Nam-Heun;Shin, Dae-Yong;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.354-360
    • /
    • 2022
  • In this study, an Co/Fe coated porcelain using a cobalt and ferrous sulfate was sintered at 1,250 ℃. The specimens were investigated by HR-XRD, FE-SEM (EDS), Dilatometer, and UV-vis spectrophotometer. The surface of the porcelain was uniformly fused with the pigment, and white ware and celadon body specimens were densely fused to a certain thickness from the surface. Other new compounds were produced by the chemical reaction of cobalt/ferrous sulfate with the porcelain body during the sintering process. These compounds were identified as cobalt ferrite spinel phases for white ware and white mixed ware, and an andradite phase for the celadon body, and the amorphous phase, respectively. As for the color of the specimens coated with cobalt and ferrous mixed pigments, it was found that the L* value was greatly affected by the white ware, and the a* and b* values were significantly changed in the celadon body. The L* values of the specimens fired with pure white ware, celadon body, and white mix ware were 72.1, 60.92, 82.34, respectively. The C7F3 pigment coated porcelain fired at 1,250 ℃ had L* values of 39.91, 50.17, and 40.53 for the white ware, celadon body, and white mixed ware, respectively; with a* values of -1.07, -2.04, and -0.19, and at b* values of 0.46 and 6.01, it was found to be 4.03. As a new cobalt ferrite spinel phase was formed, it seemed to have had a great influence on the color change of the ceramic surface.

Microstructure and Magnetic Properties of Au-doped Finemet-type Alloy

  • Le, Anh-Tuan;Kim, Chong-Oh;Ha Nguyen Duy;Chau Nguyen;Tho Nguyen Duc;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • In this report, we demonstrate a comprehensive analysis of the effects of Au addition on the microstructure and magnetic properties of $Fe_{73.5}Si_{13.5}B_{9}Nb_{3}Au_1$ Finemet-type alloy. It was found that the as-quenched alloys were the amorphous state and turned into nanocrystalline state under heat treatments. The DSC analysis indicates that the sharply exothermal peak corresponding to the crystallization of the $\alpha-Fe(Si)$ was observed at $547-579^{\circ}C$ depending on the heating rates, which is little higher than that of original Finemet (542-$570{^{\circ}C}$, respectively). Besides, the thermomagnetic result confirmed that the full substitution of Cu by Au with the single phase structure in the M(T) curve along cooling cycle. Ultrasoft magnetic properties of the nanocrystallized samples were significantly enhanced by the proper annealing such as the increase of permeability and the decrease of the coercivity. The optimum annealing condition was found at the annealing temperature of $540^{\circ}C$ and the increase of the annealing time up to 90 min.

The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheet by the Additions of BaTiO3 Powder and Dispersant (BaTiO3 분말과 분산제 첨가에 따른 Fe계 나노결정 P/M시트의 전자파흡수 특성변화)

  • Kim, Mi-Rae;Cho, Hyeon-Jeong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was pulverized using a jet mill and an attrition mill to get flake-shaped powder. The flake powder was mixed with dielectric $BaTiO_3$ powder and its dispersant to increase the permittivity. The powders covered with dielectric powders and its dispersant were mixed with a binder and a solvent and then tape-cast to form sheets. The absorbing properties of the sheets were measured to investigate the roles of the dielectric powder and its dispersant. The results showed that the addition of $BaTiO_3$ powders and its dispersant improved the absorbing properties of the sheets noticeably. The powder sheet mixed with 5 wt% of $BaTiO_3$ powder and 1 wt% of dispersant showed the best electromagnetic wave absorption rate because of the increase of the permittivity and the electrical resistance.

Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy mixed with a Ferrite Powder (Fe계 나노결정립 분말과 페라이트 복합체의 전자파 흡수특성)

  • Koo, S.K.;Lee, M.H.;Moon, B.G.;Song, Y.S.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.292-296
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties of the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.

Influence of Hydrolytic Degradation on the Morphology of Cured Urea-Formaldehyde Resins of Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Jeong, Ho-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2011
  • In an effort to understand the hydrolytic degradation process of cured urea-formaldehyde (UF) resins responsible for the formaldehyde emission of wood-based composite panels, this study analyzed the influence of acid hydrolysis on the morphology of cured UF resins with different formaldehyde/urea (F/U) mole ratios such as 1.6, 1.4, 1.2 and 1.0. Field emission-scanning electron microscopy (FE-SEM) was employed to observe both exterior and fracture surfaces on thin films of cured UF resins before and after the etching with hydrochloric acid as a simulation of the hydrolytic degradation process. FE-SEM images showed that the exterior surface of cured UF resin with the F/U mole ratio of 1.0 had spherical structures after the acid hydrolysis while the other cured UF resins were not the case. However, the fracture surface observation showed that all the samples possessed spherical structures in the cured state of UF resins although their occurrence and size decreased as the F/U mole ratio increased. For the first time, we found the spherical structures in cured UF resins of higher F/U mole ratio of 1.4. After the acid hydrolysis, the spherical structures became a much predominant at the fracture surface. These results indicated that the spherical structures in cured UF resinswere much more resistant to the hydrolytic degradation by the acid than amorphous region.