• Title/Summary/Keyword: amorphous Fe

Search Result 574, Processing Time 0.032 seconds

The Presence and Role of Intergranular Phase in Nd8Fe86-xNbxB6 (x = 0, 1, 2, 3) Nanocomposite Magnet Characterized by Mossbauer Spectroscopy

  • Han, Jong-Soo;Yang, Choong-Jin;Park, Eon-Byeung;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • Precisely refined Mossbauer study and nano structure observation revealed that intergranular phase formed between a-Fe and Nd₂Fe14B phase in NdFeNbB alloys plays a significant role on the magnetic properties. The intergranular interaction was characterized in term of Henkel Plot (δM plot), and hyperfine field, quardrupole splitting and isomer shift were refined to predict the presence and role of the intergranular phase. By the addition of Nb into Nd8Fe86B6 composition, coercivity was found to increase by 25% due to the refinement of average grain size of both the soft and hard magnetic phases which was decreased from 50 nm of virgin Nd/sub 8/Fe/sub 86/B/sub 6/ to 25 nm in Nd8Fe 85Nb₁B6 alloys. The role of Nb addition was confirmed to stabilize the Nd₂Fe14B lattice preventing from thermal vibration of the corresponding sites substituted Fe by Nb atoms in all sites in the Nd₂Fe14B lattice. The enhanced coercivity was originated from the exchange hardening of soft and amorphous phases surrounding the hard magnetic Nd₂Fe14B crystal.

Behavior of Intermetallic Compound Formation in Al-25Nb system and (Al,X)-25Nb (X= Cr, Cu, Fe, Mn) systems by Mechanical Alloying Method (A1-25Nb계와 (A1,X)-25Nb계 (X = Cr, Cu, Fe, Mn)의 기계적 합금화에 의한 금속간 화합물의 형성 거동에 관한 연구)

  • Choi, Jae-Woong;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.733-739
    • /
    • 2001
  • In Al-25Nb binary system, it was observed only formation of $D0_{22}$ $Al_3Nb$ intermetallic compound after 5hr milling but it was not observed formation of meta stable phase like L1$_2$ phase. In this state, $D0_{22}$ $Al_3Nb$ fabricated had nano sized grain of approximately 20nm. Ternary systems, transition metals such as Cr, Cu, Fe, Mn were added 6~12at.% as substitution of Al, showed formation of $D0_{22}$ $Al_3Nb$ like Al-25Nb binary system. In Al- l2Cu-25Nb system, it was observed that broad XRD pattern like amorphization of Al and not observed formation of $D0_{22}$ $Al_3Nb$ after 5hr milling. But there was mixed phase of a lot of amorphous Al and little $D0_{22}$ $Al_3Nb$ through TEM. In the states of unalloyed, 5~7hr milling time, those showed exothermic reaction at 35$0^{\circ}C$, which was formation of $D0_{22}$ $Al_3Nb$ like Al-25Nb binary system. With increasing milling time to 10hr, $D0_{22}$ $Al_3Nb$ was transformed to mixed phase of amorphous and nanocryatlline, having approximately 10nm grain but the meta stable $Al_3Nb$ was not fabricated by adding transition metals.

  • PDF

Anisotropy Control of Highly Magnetostrictive Films by Bias Stress (바이어스 응력에 의한 고자왜 아몰퍼스 박막의 자기이방성 제어)

  • Shin, Kwang-Ho;Kim, Young-Hak;Park, Kyung-Il;Sa-Gong, Geon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.193-197
    • /
    • 2003
  • To materialize the magnetoelastic devices, such as a highly functional sensor and a signal processing device, using the Fe base amorphous film which has both excellent soft magnetic and magnetostrictive properties, in this study, a new method to control the magnetic anisotropy of a highly magnetostrictive film using bias stress has been proposed and tested. The film pattern, which was stressed by its substrate bending, was subjected to annealing for relieving its stress. Successively, the compressive stress occurred by flattening the substrate was formed in the pattern. With the introduction of the residual compressive stress, the magnetization of the film pattern was aligned in the transverse direction through magnetoelasic coupling. The magnetic domain structure and magnetization curve of the film pattern of which magnetic anisotropy was controlled by the proposed method were presented to verify the availability of the method.

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.

Investigation of contact resistance between metal electrodes and amorphous gallium indium zinc oxide (a-GIZO) thin-film transistors

  • Kim, Woong-Sun;Moon, Yeon-Keon;Lee, Sih;Kang, Byung-Woo;Kwon, Tae-Seok;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.546-549
    • /
    • 2009
  • In this paper, we investigated the effects of different source/drain (S/D) electrode materials in thin film transistors (TFTs) based on indium-gallium-zinc oxide (IGZO) semiconductor. A transfer length and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with a field-effect mobility (${\mu}_{FE}$) of 10.0 $cm^2$/Vs.

  • PDF

Influence of crystallization treatment on structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons

  • Zhong, X.C.;Yu, H.Y.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1289-1293
    • /
    • 2018
  • The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.

PECVD를 이용한 비정질 실리콘 박막의 Adhesion 개선에 관한 연구

  • Han, Yeong-Jae;Choe, Yeong-Cheol;Kim, Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.316.2-316.2
    • /
    • 2016
  • Device가 점점 Shrinkage 됨에 따라 미세 패터닝을 위하여 기존에 사용하던 박막은 Hardmask 로써 CD(Critical Dimension)가 제한적으로 이를 개선하기 위한 비정질 실리콘 (amorphous silicon)으로 대체하여 사용되는 Layer의 수가 증가하고 있다. 하지만 비정질 실리콘을 증착 시, 하부막에 따른 Adhesion 및 Hillocks과 같은 공정상에서 발생하는 문제들이 발생하게 되는데, 이는 소자의 특성을 떨어뜨리게 된다. 이러한 문제를 해결하고자 본 연구에서는 PECVD를 사용하여 비정질 실리콘 박막을 증착하였고, 그 특성을 분석하였으며, Adhesion 및 Hillock 개선을 위해 비정질 실리콘 박막 증착 전 처리를 최적화하여 특성을 개선하였다. 증착된 박막의 두께 및 굴절률은 Auto thickness measurement로 분석하였고, 표면 특성은 Field emission scanning electron microscopy(FE-SEM 그림 참고), 4 Point Bending TEST를 이용하여 분석을 수행하였다.

  • PDF

Electrical Performance of Amorphous SiZnSnO TFTs Depending on Annealing Temperature (실리콘산화아연주석 산화물 반도체의 후열처리 온도변화에 따른 트랜지스터의 전기적 특성 연구)

  • Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.677-680
    • /
    • 2012
  • The dependency of annealing temperature on the electrical performances in amorphous silicon-zinc-tin-oxide thin film transistors (SZTO-TFT) has been investigated. The SZTO channel layers were prepared by using radio frequency (RF) magnetron sputtering method with different annealing treatment. The field effect mobility (${\mu}_{FE}$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing annealing temperature. As a result, oxygen vacancies generated in SZTO channel layer with increasing annealing temperature resulted in negative shift in $V_{th}$ and increase in on-current.

Giant Magnetoimpedance in C067Fe4Mo1.5Si16.5B11 Metallic Glass Ribbon

  • Kuzminski, M.;Nesteruk, K.;Lachowicz, H.K.;Krzyzewski, A.;Yu, Seong-Cho;Lee, Hee-Bok;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2004
  • Giant magneto-impedance (GMI) effect in zero-magnetostrictive Co-based amorphous ribbons samples in their as-quenched and stress-released states as well as with intentionally induced magnetic anisotropy were investigated. Magnetic and impedance properties of the samples exhibiting different anisotropy were compared and the optimum operation conditions for the studied samples from the view-point of their utilization as a sensor element have been determined. A design of a model of magnetic field sensor and characteristics of the constructed prototype are presented.