• Title/Summary/Keyword: ammonium chloride process

Search Result 69, Processing Time 0.022 seconds

Effect of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrate from by-Product Gypsum of Phosphoric Acid Process under Water Vapor at Atmospheric Pressure (상압 수증기중에서 인산 석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 1988
  • The catalytic effect of salts on formation of ${\alpha}$-calcium sulfate hemihydrate under water vapor at atmospheric pressure was studied and the formation of q-calcium sulfate hemilydrate from by-product gypsum of phosphoric acid process was investigated. The order of catalytic effect of salts are as follow: Ammonium chloride>Sodium succinate>Calcium chloride>Sodium tartrate>Magnesium chloride The prismatic crystals was formed when ammonium chloride, calcium chloride and magnesium chloride was added, whereas the needle crystals was formed when sodium tartrate was added. Ammonium chlorideis most successful in catalytic effects in formation of ${\alpha}$-calcium sulfate hermihydrate for the by-product gypsum of phosphoric acid process.

  • PDF

Preparation of Calcium Carbonate with High Purity by using Ammonium Chloride Process and Ammonium Nitrate Process (Ammonium Chloride Process 및 Ammonium Nitrate Process를 이용한 고순도 탄산칼슘의 제조)

  • Kang Mee-Sook;Soh Gowan-Soon;Shin Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.4
    • /
    • pp.203-208
    • /
    • 2004
  • The shells of Anadarac tegillarca granosa, Crassostrea gigas, Crassostrea nippona, and Patinopecten yessoensis were used for preparation of calcium carbonate with high purity. Calcium content in ash of shell was the highest $64.9\%$ in Anadarac tegillarca granosa ashed for 5 hr at $900^{\circ}C$, and followed as Patinopecten yessoensis $62.5\%$, Crassostrea gigas $62.4\%$, and Crassostrea nippona $61.5\%$. Whiteness of ash was the highest 81.6-85.8 in Patinopecten yessoensis shell. Calcium contents in calcium carbonates made with shells of Anadarac tegillarca granosa by using ammonium chloride process (ACP) and ammonium nitrate process (ANP) were higher $40.03-40.04\%$ than $39.92\%$ in Anadarac tegillarca granosa ash. Calcium content was the highest $40.04\%$ in pH adjusted calcium carbonate prepared by using ANP. Whiteness of calcium carbonate prepared by using ACP and ANP was the level of 101.0-101.5. Therefore, we estimated that the calcium carbonate made by using ACP and ANP could be used potentiality as a food additive for calcium supplement.

Ammonium Chloride Solution Leaching of Crude Zinc Oxide Recovered from Reduction of EAF′s Dust

  • Youn, Ki-Byoung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.365-369
    • /
    • 2001
  • EAF's dust has been treated mainly by pyrometallurgical reduction process in rotary kiln furnace to recover valuable metal elements such as Zn and to avoid the disposal of hazardous materials to waste. Recently, hydrometallurgical eletrowinning of zinc from a zinc-amino chloride solution obtained by the leaching of EAF's dust was developed to recover high grade zinc metal from EAF’s dust. But there are some disadvantages in each process such as difficulty of operation condition control and sticking problem in kiln process and low extractability and recovery of zinc owing to insoluble zinc-ferrite in electrowinning process. We propose a new combined process of pyrometallurgical one and hydrometallurgical one to treat EAF's dust efficiently and economically. In this study, ammonium chloride solution leaching of crude zinc oxide recovered from reduction of EAF's dust was carried out to find out the efficiency of zinc extraction from it and the possibility for performance of eletrowinning in the proposed process. Effects of various leaching variables ruck as leaching temperature, concentration of leaching solution and leaching time were investigated. And the leaching results of the crude zinc oxide were compared with those of EAF's dust. The extraction percents of zinc in ammonium chloride solution leaching of the crude zinc oxide recovered from reduction of EAF's dust were above 80% after 60 minutes of leaching under the leaching condition of 4M NH$_4$CI concentration and above leaching temperature of 7$0^{\circ}C$. And the concentrations of zinc in the leached solution were obtained above 50g/$\ell$. The activation energy calculated for zinc extraction in NH$_4$CI leaching was 58.1 KJ/㏖ for EAF's dust and 15.8 KJ/㏖ for the crude zinc oxide recovered from reduction of EAF's dust.

  • PDF

Nitrogen Removal by Electrochemical Oxidation Using the Tube Type Electrode (튜브형 전극을 이용한 전기화학적 산화에 의한 질소제거에 관한 연구)

  • Cho, Jae-Jun;Jeong, Jong-Sik;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.580-587
    • /
    • 2004
  • The objective of this research is to investigate the electrochemical oxidation process for nitrogen removal in wastewater involving chloride ion and nitrogen compounds. The process experiment of electrochemical oxidation was conducted by using the stainless steel tube type reactor and the $Ti/IrO_2$ as anode. Free chlorine production and current efficiency variation for total nitrogen removal was compared depending on whether electrolyte is added, and the nitrogen type distribution under an operating condition. When chloride was added as electrolyte, it was found that production of free chlorine increased and the concentration of the chloride decreased as retention time passed. The concentration of chloride in influent decreased from 1,660 to 1,198 mg/L at the current density of $6.7A/dm^2$, while concentration of free chlorine increased to 132 mg/L. Current efficiency in removal of ammonium nitrogen was increased when chloride was dosed as electrolyte. It was observed that ammonium nitrogen was oxidized to nitrite and nitrate through electrochemical oxidation and that the concentration of total nitrogen in influent was reduced from 22.58 to 4.00 mg/L at the short retention time of 168 seconds through the electrochemical oxidation of nitrogen.

Purity Improvement of Calcium Lactate and Calcium Citrate Prepared with Shell of Anadarac tegillarca granosa (꼬막 패각으로 제조한 젖산칼슘과 구연산칼슘의 순도 향상에 대한 연구)

  • Kang mee-Sook;Soh Gowan-Soon;Shin Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • Ash of Anadarac tegillarca granosa shell was used for preparation of calcium lactate and calcium citrate, and improvement of their purity was carried out by using ammonium chloride process (ACP) and ammonium nitrate process (ACP). Purity of calcium lactate and calcium citrate made by the reaction of ash of Anadarac tegillarca granosa shell with lactic acid solution and with citric acid solution was 94.35-96.72 and $87.58-93.06\%$, respectively. However, purity of calcium lactate and calcium citrate prepared with purified calcium carbonate pre-purified from the ash of Anadarac fegiliarca granosa shell using ACP and ANP method was 99.53-100.34 and $99.32-99.88\%$, respectively. The purity of these calcium products were higher than those of calcium lactate and calcium citrate made with ash of Anadarac tegillarca granosa shell. Whiteness of calcium lactate and calcium citrate prepared with purified calcium carbonate pre-purified using ACP and ANP method was 94.8-98.5 and 99.4-101.5, respectively. Whiteness of these calcium products was higher than that of calcium lactate (91.8) and calcium citrate (92.9) made with the ash of Anadarac tegillarca granosa shell. Therefore, we estimated that calcium lactate and calcium citrate prepared with purified calcium carbonate using ACP and ANP method could be used potentially as a food additive for calcium supplement.

Studies on the catalytic charcoaling (촉매적(觸媒的) 제탄(製炭)에 관(關)한 시험(試驗))

  • Park, Tae Sik;Park, Meung Gue
    • Journal of Korean Society of Forest Science
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 1963
  • 1. Objects The experiments of catalytic aharcoaling were carried out for the fallowing purposes. (1) To determine the economically desirable amount of catalytic materials to be used when a catalytic charcoaling is practiced. (2) To observe the rate of carbonization of non-treated charcoal wood when the catalytic charcoaling is proceeded in the same charcoal pit. 2. Meterials (1) Small sample chips made of oak (Q. accutissima Carr.), measured by 0.5cm in width and thickness, respectively, and 1cm in length, were used as charcoal wood in each experiment. (2) Ammonium chloride was used as a catalytic material and electric kiln as a charcoaling apparatus. 3. Experiment (1) The sample chips were put into a electric oven for three hours at the temperature $60^{\circ}{\sim}70^{\circ}C$ in order to reduce some water contents. (2) Oven dried sample chips were then soaked for an hour in solution of ammonium chloride. Three kinds of solution were prepared, that is, 2.5%, 5%, and 10%, solution in which the amount of ammonium chloride used was weighed at the rate of 0.5%, 1.0%, and 2.0% to the total weight of the sample chips, resppectivelly. (3) Soaked sample chips were put in the air for 12 hours to reduce some water contents, and then were put into electric oven for 2 hours at the temperature $105^{\circ}{\sim}110^{\circ}C$. (4) Dried sample chips were kept in a desiccator with control sample chips which were treated excarly the same process as the treated sample chips except only not using the ammonium chloride in the process of soking. (5) Sample chips kept in the desiccator were used at random in each charcoaling experiment. (6) Charcoaling in the electric kiln were carried out by using small crucibles with complete cover to reduce the amount of ash. At each charcoaling experiment four crucibles filled with sample ships, weighed about 20gr, were put into electric kiln. The charcoaling was continued for an hour at the temperature $400^{\circ}{\sim}450^{\circ}C$. (7) In order to investigate the influence given by the gases produced during the catalytic charcoaling to the rate of carbonization of non-treated sample chips, the following experiment was done. (a) A crueible was divided into two parts by inserting a fine iron net at the middle of the crucible, and then non-treated sample chips, weighed about 10gr, were put in the upper part of the crucible and treated sample chips, weighed also about 10gr, were put in the under part. (b) The crucibles filled with two kinds of sample chips were put into a electric kiln for an hour at the temperature $400^{\circ}{\sim}450^{\circ}C$. 4. Results. Results for two replications (with four crucibles in one replication) for each experiment designed are as follows : (1) The rats of carbonization of the non treated sample chips, and that of the treated sample chips with ammonium chloride at the rate of 1.5%, 1.0%, and 2.0% to the total weight of the sample chips used were averaged at 19.85%, 22.63%, 24.14%, and 26.60%, respectively. (2) The rats of carbonization of the non-treated sample chips were averaged at (a) 20.04% (0.5% treatment), (b) 20.28% (1.0% treatment), and (c) 20.61% (2.0% treatment) when the treated sample chips were carbonized in the same crucible.

  • PDF

Recovery Process of Vanadium from the Leaching Solution of Salt-Roasted Vanadate Ore (바나듐광 염배소물 수침출 용액으로부터 바나듐 회수공정 고찰)

  • Yoon, Ho-Sung;Heo, Seo-Jin;Park, Yu-Jin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Rina;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.40-48
    • /
    • 2022
  • In this study, the effects of solution components were investigated in the recovery of vanadium as ammonium metavanadate from vanadium-ore-salt roasting-water leaching solution. The vanadium-containing solution is strongly alkaline (pH 13), so the pH must be lowered to 9 or less to increase the ammonium metavanadate precipitation efficiency. However, in the process of adjusting the solution pH using sulfuric acid, aluminum ions are co-precipitated, which must be removed first. In this study, aluminum was precipitated in the form of an aluminum-silicate compound using sodium silicate, and the conditions for minimizing vanadium loss in this process were investigated. After aluminum removal, the silicate was precipitated and removed by adjusting the solution pH to 9 or less using sulfuric acid. In this process, the concentration and addition rate of sulfuric acid have a significant influence on the loss of vanadium, and vanadium loss was minimized as much as possible by slowly adding dilute sulfuric acid. Ammonium metavanadate was precipitated using three equivalents of ammonium chloride at room temperature from the aluminum-free, aqueous solution of vanadium following the pH adjustment process. The recovery yield of vanadium in the form of ammonium metavanadate exceeded 81%. After washing the product, vanadium pentoxide with 98.6% purity was obtained following heat treatment at 550 ℃ for 2 hours.

Crosslinked poly(vinylbenzyl trimethy ammonium chloride)-impregnated poly(ethylene) and poly(tetrafluoroethylene) composite membranes using for electrolysis process (전기투석공정을 위한 Poly(ethylene)과 poly(tetrafluoroethylene)다공성 필름을 이용한 가교된 poly(vinylbenzyl trimethyl ammonium chloride)복합막 제조)

  • Lee, Jung-Soo;Chang, Bong-Jun;Kim, Jeong-Hoon;Lee, Soo-Bok;Kang, Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.180-184
    • /
    • 2008
  • PDF

Isothermal Crystallization Kinetics of Quaternary Ammonium Group Grafted Polypropylene (제4암모늄기의 곁가지를 가지는 폴리프로필렌에서 등온결정화속도)

  • Liu, Guangtian
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.268-274
    • /
    • 2015
  • In this paper, the isothermal crystallization kinetics of a functional PP (FPP) with different grafting yields (GY)-methacryloxyethyltrimethyl ammonium chloride (DMC) grafted PP were investigated by differential scanning calorimetry (DSC). The results showed that the crystallization rate of FPP (GY=4.83%) was the highest for all of the studied samples. Furthermore, for the FPP with different GY, the value of $t_{1/2}$ became longer with increasing the grafting yield (GY). The possible explanation was that the quaternary ammonium groups introduced affected the crystallization process of the FPP in two opposite directions, i.e. promoting the nucleation and hindering the transport of the chain molecules towards the growing nuclei. Polarized optical micrographs showed that the DMC chains acted as nucleating agents, which accelerated the nucleation. In addition, the results showed the FPP had lower nucleation free energy than the PP. This study would be useful for designing the processing parameters of the grafted samples.

Antimicrobial and Water Repellency Effect of Functional PET Fibers with ODDMAC(octadecyldimethyl(3-triethoxy silylpropyl) ammonium chloride) (ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 PET 섬유)

  • Yang, Heejin;Jeon, Hyeji;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.265-273
    • /
    • 2020
  • In this study, octadecyldimethyl(3-triethoxy silylpropyl)ammonium chloride (ODDMAC) incorporated with Polyethylene terephthalate (PET) fabrics with different environmental conditions such as various temperature and time intervals. First, ODDMAC (15 weight %) was dissolved in ethanol. Then PET fabrics immersed in the ODDMAC solution at 25 ℃ for 10 minutes and dried at 80 ℃ for 5 minutes. The dried PET/PDDMAC fabrics carried out for curing process out at 110 ℃ ~ 190 ℃. The treated PET/ODDMAC has examined the surface and side coating properties through SEM analysis and elemental analysis. PET/ODDMAC fabric washed with water up to 50 times and studied the durability of the materials. It was confirmed that the treated PET fabric also exhibited good water repellency. In addition, the antimicrobial activity against the gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli were studied by the disc diffusion method on the treated fabric.