• Title/Summary/Keyword: ammonia nitrogen removal

Search Result 274, Processing Time 0.021 seconds

Ammonia Nitrogen Removal and Recovery from Swine Wastewater by Microwave Radiation

  • La, Joohee;Kim, Taeyoung;Jang, Jae Kyung;Chang, In Seop
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.381-385
    • /
    • 2014
  • Microwave (MW) radiation was developed to remove and recover ammonia nitrogen in the real swine wastewater. The effect of operating parameters of MW radiation such as initial pH, power, radiation time, aeration, and stirring for removal ammonia nitrogen in swine wastewater was determined. The pH, radiation time, and power were significantly influenced on the removal of ammonia nitrogen, and aeration and stirring showed relatively minor effect on the removal of ammonia nitrogen. Optimum condition was achieved to retrieve the nitrogen efficiently at pH 11, 700 W for 5 min in MW radiation process. Through this process, 83.1% of ammonia nitrogen concentration was reduced in swine wastewater and also 82.6% of ammonia nitrogen was recovered as ammonium sulfate at the optimized condition. The high ammonia removal and recovery efficiency of the MW radiation method indicated that MW radiation was an effective technique to remove and recover ammonia nitrogen in the swine wastewater.

Removal of #NH_3-N$ by using Immobilized Nitrifier Consortium in Polyvinyl Alcohol (PVA에 고정화된 질화세균에 의한 암모니아성 질소제거)

  • 서근학;김용하;조진구;김병진;서재관;박은주;김성구
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.479-483
    • /
    • 1999
  • Nitrifier consortium immobilized in polyvinyl alcohol was used for the removal of ammonia nitrogen from synthetic aquaculture water in the airlift bioreactor. At the aeration rate fo 0.15 vvm and bead packing volume fraction of 20%, airlift bioreactor was operated effectively for a removal of ammonia nitrogen and for a stability of operation. Ammonia nitrogen removal rate by airlift bioreactor was continuously increased with decreasing hydraulic residence time. At the HRT(hydraulic residence time) of 0.3 hour, ammonia nitrogen removal rate was 84.3 g/$m^3$.d and the highest ammonia nitrogen removal rate was 130.8 g/$m^3$.d when HRT was 0.1 hour.

  • PDF

Removal of NH(sub)3-N by Using Immobilized Nitrifier Consortium in PVA[Polyvinyl Alcohol]-I. Effect of Packing Fraction and Aeration Rate on Ammonia Nitrogen Removal (PVA에 고정화된 질화세균군에 의한 암모니아성 질소 제거 I. 충진율 및 공기 유입량이 암모니아성 질소제거에 미치는 영향)

  • 서근학;김병진;오창섭
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.314-319
    • /
    • 2001
  • A nitrifier consortium immobilized in polyvinyl alcohol was used to remove ammonia nitrogen from synthetic wastewater in an airlift bioreactor. The minimum aeration rates were 0.4, 0.6, 0.8 and 1.0 vvm for 5, 10, 15 and 20% immobilized bead packing volume fraction, respectively. The efficient packing fraction and the aeration rate for ammonia nitrogen removal were 15% and 2.4 vvm, respectively. With a hydraulic retention time of 0.5hr, the removal rate and the efficiency of ammonia nitrogen removal were 1685 g/㎥$.$day and 48% at an influent ammonia nitrogen concentration of 75 g/㎥.

  • PDF

Ammonia Nitrogen Removal by Cation Exchange Resin (양이온 교환수지에 의한 암모니아성 질소 제거)

  • 이동환;이민규
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • This study was conducted to know the removal characteristics of ammonia nitrogen by commercially available cation exchange resins. Eight acidic cation exchange resins were investigated in batch reactors. Among them, the most effective resin for ammonia removal in solution was PK228, which was a strong acidic resin of $Na^{+}$ type. PK228 was compared with activated carbon and natural zeolite. The effects of cation exchange capacity, ammonia concentration, resin amount, temperature and pH on ammonia removal by PK228 were investigated in batch reactor, and the effect of effluent velocity in continuous column reactor. Strong acidic resins of porous type were more effective than week acidic resins or gel type resins for ammonia removal in solution. PK228 was more effective than activated carbon and natural zeolite for ammonia removal in batch reactor. With increasing initial ammonia concentration, the amount of ammonia removed by PK228 increased, but the proportion of removed ammonia to initial ammonia concentration decreased. The effect or temperature on ammonia removal by PK228 was very slight. The ammonia removal to acidic solution was more effective than that at basic solution. With decreasing effluent velocity of solution through column, breakthrough point extended, and ammonia removal capacity increased.d.

Nitrification of low concentration ammonia nitrogen using zeolite biological aerated filter (ZBAF)

  • Kim, Jin-Su;Lee, Ji-Young;Choi, Seung-Kyu;Zhu, Qian;Lee, Sang-Ill
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.554-560
    • /
    • 2020
  • This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.

Effects of Operating Parameters on the Removal Performance of Ammonia Nitrogen by Electrodialysis (전기투석에 의한 암모니아성질소의 제거 시 운전인자의 영향)

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Jung, Byung-Gil;Han, Young-Rip;Sung, Nak-Chang
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for ammonia nitrogen removal from wastewater, the effects of operating parameters such as diluate concentration, applied voltage and flow rate on the removal of ammonia nitrogen were experimentally estimated. The removal rate was evaluated by measuring the elapsed time for ammonia nitrogen concentration of diluate to reach 20 mg/L. Limiting current density (LCD) linearly increased with ammonia nitrogen concentration and flow rate. The elapsed time was linearly proportional to initial concentration of diluate. Due to relatively large equivalent ion conductivity and ion mobility of ammonia nitrogen, the removal rate increased consistently with flow rate. Increase in the applied voltage gave positive effect to removal rate. From the operation of the electrodialysis module used in this research, the flow rate of 3.2 L/min and 80~90% of applied voltage for LCD are recommended as the optimum operating condition for the removal from high concentrate ammonia nitrogen solution.

Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata (Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this study, the removal characteristic of ammonia nitrogen and behavior of nitrogen was investigated using Leclercia adecarboxylata, which was derived from the culture contaminated by ammonia nitrogen of high concentration. The method of ammonia nitrogen removal was not biological nitrification and denitrification but elimination of nutrient salt with internal synthesis of microorganisms which use ammonia nitrogen as substrate. L. adecarboxylata(one of ammonia synthesis microorganisms) was highly activated and showed the most high removal efficiency in free salt condition but the removal efficiency decreased badly in salt concentration of more than 4%. About 80 mg/L of $NH_3-N$ was mostly removed within 20 hours and 500 mg/L of $NH_3-N$ showed less then removal efficiency of 50% because carbon source was not enough. However, ammonium nitrogen concentration was decreased again when the carbon source was inserted additionally thus, ammonium nitrogen removal efficiency by L. adecarboxylata, was related to amount of carbon source. pH decreased from 8.0 to 6.36 according to growth of L. adecarboxylata. Concentration of nitrite nitrogen and nitrate nitrogen did not increase and TKN concentration showed no variation while ammonia nitrogen was removed by L. adecarboxylata. In addition to, when content of protein in organic nitrogen was measured, protein was not detected at the beginning of microorganism synthesis but protein of 193.1 mg/L was detected after 48 hours. Hence, ammonium nitrogen was not decomposed as nitrate nitrogen and nitrite nitrogen but synthesized by L. adecarboxylata, which has excellent ability of nitrogen synthesis and can threat ammonia nitrogen of high concentration in wastewater.

A Study on the Chemical Treatment Techniques of High Concentration Ammonia Nitrogen in Food Wastewater

  • Tae-Hwan JEONG;Su-Hye KIM;Woo-Taeg KWON
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.3
    • /
    • pp.33-36
    • /
    • 2023
  • Purpose: Since the food wastewater contains a high concentration of nitrogen, it is very important to find a way to efficiently remove it. Research design, data and methodology: A total of four experiments were conducted under different conditions to remove ammonia nitrogen present in the food wastewater. The experiment was designed by adding sodium hypochlorite to the raw food wastewater and varying conditions such as pH control, aeration/precipitation, and stirring. Results: The ammonia nitrogen removal rate in Experiment 1 was about 12% (sodium hypochlorite added), ammonia nitrogen increased about 4.7% in Experiment 2 (sodium hypochlorite added after aeration/precipitation in a bioreaction tank, stirring), and decreased about 52.5% (sodium hypochlorite added after controlling and stirring). Conclusions: When the concentration of sodium hypochlorite was high, ammonia nitrogen was best removed, and the pH was adjusted to 12, and sodium hypochlorite was added after stirring, and the removal was the second best. If the method of this study is further studied and developed, it can be basic data for ammonia nitrogen removal in the future.

Removal of Ammonia Nitrogen and Reduction of THMs in Low Temperature by BAC Pilot Plant (BAC Pilot Plant 를 이용한 겨울철 암모니아성 질소 제거 및 THMs 변화)

  • Kang, Eun-Jo;Seo, Young-Jin;Lee, Won-Kwon;Chun, Pyoung-Hee;Lee, Ji-Hyung;Yoon, Jung-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.107-114
    • /
    • 1995
  • The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.

  • PDF

Removal of Ammonia-N by Immobilized Nitrifier Consortium (고정화된 질화 세균군에 의한 암모니아성 질소 제거)

  • 서근학;김병진;조문철;조진구;김용하;김성구
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.238-243
    • /
    • 1998
  • Nitrifier consortium immobilized in Ca and Ba-alginate beads were packed into two bioreactors and the performances of bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. The total ammonia nitrogen (TAN) concentration of the influent was continually kept about 2g TAN/㎥. At the HRT of 0.6hr, ammonia nitrogen removal rate of two bioreactors were about 52.6 and 51.0g TAN/$\textrm{m}^3$/day, respectively. At the respect of ammonia nitrogen removal, two bioreactor showed the similar abilities. The second trial with nitrifier consortium immobilized in Ca-alginate bead was carried out to evaluate the ammonia nitrogen removal rate for 35 days. The highest ammonia nitrogen removal rate was 82g TAN/$\textrm{m}^3$ when HRT was about 0.3hr.

  • PDF