• Title/Summary/Keyword: ammonia emissions

Search Result 142, Processing Time 0.021 seconds

Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs

  • Lee, Shin Ja;Shin, Nyeon Hak;Ok, Ji Un;Jung, Ho Sik;Chu, Gyo Moon;Kim, Jong Duk;Kim, In Ho;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1202-1208
    • /
    • 2009
  • Synbiotics is the term used for a mixture of probiotics (live microbial feed additives that beneficially affects the host animal) and prebiotics (non-digestible food ingredients that beneficially affect the organism). This study investigated the effect of probiotics from anaerobic microflora with prebiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in weaning pigs. 150 pigs with an initial BW of 6.80${\pm}$0.32 kg (20 d of age) were randomly assigned to 5 dietary treatments as follows: i) US, basal diet+0.15% antibiotics (0.05% oxytetracycline 200 and 0.10% tiamulin 38 g), ii) BS, basal diet+0.2% synbiotics (probiotics from bacteria), iii) YS, basal diet+0.2% synbiotics (probiotics from yeast), iv) MS, basal diet+0.2% synbiotics (probiotics from mold), v) CS, basal diet+0.2% synbiotics (from compounds of bacteria, yeast and mold). The probiotics were contained in $10^{9}$ cfu/ml, $10^{5}$ cfu/ml and $10^{3}$ tfu/ml of bacteria, yeast and molds, respectively. The same prebiotics (mannan oligosaccharide, lactose, sodium acetate and ammonium citrate) was used for all the synbiotics. Pigs were housed individually for a 16-day experimental period. Growth performance showed no significant difference between antibiotic treatments and synbiotics-added treatments. The BS treatment showed higher (p<0.05) dry matter (DM) and nitrogen digestibility while ether extract and crude fiber digestibility were not affected by the dietary treatment. Also, the BS treatment decreased (p<0.05) fecal ammonia and amine gas emissions. Hydrogen sulfide concentration was also decreased (p<0.05) in BS, YS and MS treatments compared to other treatments. Moreover, all the synbioticsadded treatments increased fecal acetic acid concentration while the CS treatment had lower propionic acid concentration than the US treatment (p<0.05) gas emissions but decreased in fecal propionate gas emissions. Total fecal bacteria and Escherichia coli populations did not differ significantly among the treatments, while the Shigella counts were decreased (p<0.05) in synbiotics-included treatment. Fecal bacteria population was higher in the YS treatment than other treatments (p<0.05). The BS treatment had higher yeast concentration than YS, MS and CS treatments, while US treatment had higher mold concentrations than MS treatment (p<0.05). Therefore, the results of the present study suggest that synbiotics are as effective as antibiotics on growth performance, nutrient digestibility and fecal microflora composition in weaning pigs. Additionally, synbiotics from anaerobic microflora can decrease fecal noxious gas emission and synbiotics can substitute for antibiotics in weaning pigs.

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.

Effect of Chlorine Dioxide (ClO2) on the Malodor Suppression of Chicken Feces (이산화염소(ClO2) 처리가 계분의 악취 억제에 미치는 영향)

  • Ji Woo, Park;Gyeongjin, Kim;Tabita Dameria, Marbun;Duhak, Yoon;Changsu, Kong;Sang Moo, Lee;Eun Joong, Kim
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study evaluated the efficacy of chlorine dioxide (ClO2) as an oxidant to reduce malodor emission from chicken feces. Two experiments were performed with the following four treatments in parallel: 1) fresh chicken feces with only distilled water added as a control, 2) a commercial germicide as a positive control, and 3) 2,000 or 4) 3,000 ppm of ClO2 supplementation. Aluminum gas bags containing chicken feces sealed with a silicone plug were used in both experiments, and each treatment was tested in triplicate. In Experiment 1, 10 mL of each additive was added on the first day of incubation, and malodor emissions were then assessed after 10 days of incubation. In Experiment 2, 1 mL of each additive was added daily during a 14-day incubation period. At the end of the incubation, gas production, malodor-causing substances (H2S and NH3 gases), dry matter, pH, volatile fatty acids (VFAs), and microbial enumeration were analyzed. Supplementing ClO2 at 2,000 and 3,000 ppm significantly reduced the pH and the ammonia-N, total VFA, H2S, and ammonia gas concentrations in chicken feces compared with the control feces (P<0.05). Additionally, microbial analysis indicated that the number of coliform bacteria was decrease after ClO2 treatment (P<0.05). In conclusion, ClO2 at 2,000 and 3,000 ppm was effective at reducing malodor emission from chicken feces. However, further studies are warranted to examine the effects of ClO2 at various concentrations and the effects on malodor emission from a poultry farm.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

A Study on Calculation of Air Pollutant Emissions from ships at Incheon Port and the Effects of Eco-Friendly Policies (인천항 선박 대기오염물질 배출량 산정 및 친환경 정책 효과에 대한 연구)

  • Lee, Jungwook;Lee, Hyangsook
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • In the past, interest in air pollution was concentrated on greenhouse gases, but in recent years, interest in fine dust has been increasing. The media and environmental organizations continue to emphasize air pollution caused by fine dust. The awareness of fine dust is increasing, and air pollution generated at ports is analyzed to be serious as a domestic factor excluding foreign inflows. Recognizing this, in order to reduce air pollution generated at ports, special laws on improving air quality, such as port areas, have been enacted in Korea, and attempts are being made to curb air pollution caused by ports. In this law, it is a policy that regulates air pollutants generated not only by ships but also throughout ports such as vehicles and unloading machines, and representative are ECA, VSR, and AMP. This study attempted to analyze the effects of these eco-friendly policies at Incheon Port. First of all, a study was conducted to calculate emissions assuming that there was no policy, analyze each policy, and finally calculate and compare actual emissions reflecting all policies. The methodology presented by the European Environmental Administration and the U.S. Environmental Protection Agency was used, and pollutants to be analyzed were analyzed for sulfur oxides (SOX), carbon monoxide (CO), nitrogen oxides (NOX), total floating substances (TSP), fine dust and ultrafine dust (PM10, PM2.5) and ammonia (NH3). As a result of the analysis, it was analyzed that the actual emission reflecting all policies was about 4,097 tons/year, which had an emission reduction effect of about 760 tons/year compared to about 4,857 tons/year when the policy was not reflected. When the effects of each policy were analyzed individually, it was found that ECA 4,111 tons/year, VSR 4,854 tons/year, and AMP 4,843 tons of air pollutant emissions occurred The results of this study can be used as basic data and evidence for policy establishment related to the atmospheric environment at Incheon Port.

Study on the Feasibility of Utilization of Pine Cone Byproduct as a Natural Deodorizing Agent for Composting Process (퇴비화 시설용 천연 악취저감제로의 잣송이 부산물의 활용 가능성에 관한 연구)

  • Chun, H.S.;Kwag, J.YH.;Ga, C.H.;Park, J.I.;Kim, C.H.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.129-138
    • /
    • 2007
  • A natural deodorizing agent (NDA) was made using pine cone byproduct, and its effects on malodor emission and composting were analyzed in this study. NDA was manufactured by mixing pine cone byproduct with three species of microorganisms and water containing mineral nutrients and molasses, and then by incubating for 48 hours at $30^{\circ}C$. Lab scale experiments were done with three treatment groups, T1 (control, sawdust treatment), T2 (microorganisms and sawdust treatment group), and T3 (NDA and sawdust treatment group). During composting, temperatures reached over $55^{\circ}C$, a minimum temperature for the inactivation of pathogenic microorganisms. No differences were found in physicochemical composition of compost among treatments. However, it was observed that over usage of NDA could obstruct temperature increase, since the biodegradation rate of organic matter of NDA was relatively low, Nitrogen loss due to ammonia gas emission, which normally happens during composting, was reduced by using NDA, and hence the nitrogen level of final compost was higher in T3 than in others. During experiment, it was found that ammonia gas emission was entirely lasted through compositing duration, but the $CH_3SH$ and $H_2S$ gases were produced only at early stage of composting. The ammonia concentration trapped in $H_2SO_4$ solution during 31 days of composting in T1, T2 and T3 was 12,660mg/L, 11,598mg/L and 7,367mg/L, respectively, showing distinguishable reduction of ammonia gas emission in T3. The emissions of $CH_3SH$ and $H_2S$ gases were also remarkably reduced in T3. Based on these obtained results, usage of the deodorizing agent made with pine cone byproduct could reduce the emission of malodor during composting, without any deterioration of compost quality.

  • PDF

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

Comparison of Fuel-NOx Formation Characteristics in Conventional Air and Oxyfuel Combustion Conditions (일반 공기 및 순산소 연소 조건에서 Fuel-NOx 생성 특성의 비교)

  • Woo, Mino;Park, Kweon Ha;Choi, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.481-488
    • /
    • 2013
  • Nitric oxide ($NO_x$) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of coflow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the $NO_x$ emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the $NO_x$ emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the $NO_x$ emission in the condition of oxyfuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of $NO_x$ formation for various oxidizer compositions, 1D and 2D numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2D simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured $NO_x$ emissions.

Evaluation of Odor Reduction in the Enclosed Pig Building Through Spraying Biological Additives (생물학적 첨가제 살포에 의한 밀폐형 돈사에서의 악취 저감 평가)

  • 김기연;최홍림;고한종;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.467-478
    • /
    • 2006
  • Maintenance of an optimal air quality in the enclosed pig building is potentially important in terms of pig performance and farmer health. The objective of this on-site experiment is to evaluate and compare efficiencies of currently utilized biological additives to reduce odor emissions from the enclosed pig building. As a result, generally all the additives except for salt water, artificial spice and essential oil were proved ineffective in reducing odor generation. The beneficial effects of salt water, artificial spice and essential oil on odor reduction were highlighted on ammonia, odor intensity and offensiveness, and sulfuric odorous compounds, respectively. To efficiently utilize odor masking agent such as the artificial spice, ventilation rate should keep slightly lower than the optimal level. Essential oil functioned well as not only masking agent but also antimicrobial agent for reducing odor. To precisely quantify odor concentration, it should be measured by not the odor sensor but the olfactometry technique.

Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2023-2033
    • /
    • 2021
  • Objective: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. Methods: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. Results: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4++NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. Conclusion: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.