• Title/Summary/Keyword: ammonia and phosphorus removal

검색결과 54건 처리시간 0.023초

생물학적 영양소 제거공정의 적정 설계 및 운전인자 도출을 위한 간단한 수학적 접근법 (Simplified Mathematical Approach for Optimum Design and Operation Parameters of the Full-Scale BNR Processes)

  • 김태훈;하준수;박재홍;김성원;최의소
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.448-457
    • /
    • 2005
  • The conventional activated sludge processes were operated as a combined organic substrate removal and nitrification. So, it was necessary to provide with oxygen for both carbon and ammonia removal. But, in the BNR processes, nitrification is separated from carbon removal that causes fast ammonia oxidation and reduced oxygen demands. And most of the substrate is utilized by denitrification organisms and phosphorus accumulating organisms. with these appearances, mathematical model for BNR processes different from IWA ASM can be simplified and applied. In this study, it was performed that the existing equations as McKinney model, nitrification model published by U.S. EPA and oxygen demands from stoichiometry and the relationship between NUR and OUR were applied to full-scale BNR processes and the results were compared with the measured. and it is possible to make out the optimum design parameter from those equations.

스트루바이트 생성을 통한 하수슬러지 탈수여액 내 인 제거 (Phosphorus removal from dewatering centrate in wastewater treatment by struvite formation)

  • 김상현;박종훈;주현준
    • 유기물자원화
    • /
    • 제21권2호
    • /
    • pp.71-78
    • /
    • 2013
  • 하수처리 탈수여액 내에 존재하는 고농도 인을 스트루바이트 생성을 통해 제거하기 위한 타당성 조사를 수행하였다. 혐기 소화를 거친 탈수여액 내에는 암모니아가 인산염 보다 높은 농도로 존재하므로 별도의 질소 투입 없이 마그네슘 주입과 pH 조절만을 통해 인 제거가 가능하였다. 인 제거 효율은 마그네슘 주입량, 교반 시간, 침전 시간, pH에 영향을 받았으며, 최적 반응 조건은 $Mg^{2+}/PO_4^{3-}$ 비 2 mol/mol 이상, 교반 시간 10분 이상, 침전 시간 120분 이상, pH 8.5 이상으로 도출되었다. 위 조건에서의 연속 운전 시 총인 제거율 80%, 인산염 제거율 82% 달성이 가능하였다. 침전물의 원소 조성과 결정 구조는 기존 보고된 스트루바이트와 유사하였다.

Kinetics of Removing Nitrogenous and Phosphorus Compounds from Swine Waste by Growth of Microalga, Spirulina platensis

  • Kim, Min-Hoe;Chung, Woo-Taek;Lee, Mi-Kyung;Lee, Jun-Yeup;Ohh, Sang-Jip;Lee, Jin-Ha;Park, Don-Hee;Kim, Dong-Jin;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.455-461
    • /
    • 2000
  • Abstract Spirulina platensis was grown in SWlUe waste to reduce inorganic compowlds and simultaneously produce feed resources. Spirulina platensis prefers nitrogenous compounds in Ibe order: $NH_4^{+}-N>NO_3^{-}-N>simple-N$ such as urea and simple amino acids. It even consumes $NH_4^{+}-N$ first when urea or nitrate are present. Therefore, the content of residual $NH_4^{+}-N$ in Spimlina platensis cultures can be determined by the relative extent of the following processes: (i) algal uptake and assimilation; (ii) ammonia stripping; and (iii) decomposition of urea to NH;-N by urease-positive bacteria. The removal rates of total nitrogen ffild total phosphorus were estimated as an indicator of the treatment effIciency. It was found that Spirulina platensis was able to reduce 70-93% of $P_4^{3-}-P$, 67-93% of inorganic nitrogen, 80-90% of COD, and 37-56% of organic nitrogen in various concentrations of swine waste over 12 days of batch cultivation. The removal of inorganic compounds from swine waste was mainly used for cell growth, however, the organic nitrogen removal was not related to cell growlb. A maximum cell density of 1.52 dry-g/l was maintained with a dilution rate of 0.2l/day in continuous cultivation by adding 30% swine waste. The nitrogen and phosphorus removal rates were correlated to the dilution rates. Based on the amino acid profile, the quality of the proteins in the Spirulina platensis grown in the waste was the same as that in a clean culture.ulture.

  • PDF

Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters

  • Kwon, Gyutae;Nam, Ji-Hyun;Kim, Dong-Min;Song, Chulwoo;Jahng, Deokjin
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.135-146
    • /
    • 2020
  • This study was aimed to investigate the possibility of using raw and anaerobically-digested piggery wastewater as culture media for a green microalga Chlorella vulgaris (C. vulgaris). Due to high concentration of ammonia and dark color, the microalga did not grow well in this wastewater. In order to solve this problem, air stripping and NaOCl-treatment were applied to reduce the concentration of NH3-N and the color intensity from the wastewater. Algal growth was monitored in terms of specific growth rate, biomass productivity, and nutrient removal efficiency. As a result, C. vulgaris grew without any sign of inhibition in air-stripped and 10-folds diluted anaerobically-digested piggery wastewater with enhanced biomass productivity of 0.57 g/L·d and nutrient removal of 98.7-99.8% for NH3-N and 41.0-62.5% for total phosphorus. However, NaOCl-treatment showed no significant effect on growth of C. vulgaris, although dark color was removed greatly. Interestingly, despite that the soluble organic concentration after air stripping was still high, the biomass productivity was 4.4 times higher than BG-11. Moreover, air stripping was identically effective for raw piggery wastewater as for anaerobic digestate. Therefore, it was concluded that air stripping was a very effective method for culturing microalgae and removing nutrients from raw and anaerobically-digested piggery wastewaters.

전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구 (A Study on the Reduction of COD, Total Phosphorus and Nitrogen in Wastewater by Electrolysis and HClO Treatment)

  • 김태경;송주영
    • 한국응용과학기술학회지
    • /
    • 제34권3호
    • /
    • pp.436-442
    • /
    • 2017
  • 합성폐수 내의 유기물(COD), 질산성 질소, 인산이온을 제거하기 위한 폐수처리 시스템 개발을 위한 연구를 수행하였다. 먼저 COD는 HClO의 산화 반응에 의해 거의 100 % 제거되었으며 전기화학적 처리에 의해 질산성 질소가 암모니아성 질소로 환원되지만, 암모니아성 질소는 HClO 처리에 의해 질산성 질소로 재 산화 되었다. 암모니아성 질소는 가열 증발 처리에 의하여 거의 100% 제거 되었으며 HClO 처리를 하여도 재 산화되는 암모니아성 질소는 나타나지 않았다. 인산 이온은 pH에 따라 금속 착염을 형성함으로써 침전 처리에 의해 제거할 수 있었으며 전기화학적 처리와 HClO 처리를 통하여 COD 99.5 % 이상, 질소 97.3 %, 인 91.5 %의 제거 효율을 얻을 수 있었다.

교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거 (Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw)

  • 서인석;김홍석;김연권;김지연
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

TREATMENT OF HIGH-CONCENTRATION SWINE WASTEWATER BY ANAEROBIC DIGESTION AND AN AQUATIC PLANT SYSTEM

  • Kim, B.U.;Kwon, J.H.
    • Environmental Engineering Research
    • /
    • 제11권3호
    • /
    • pp.134-142
    • /
    • 2006
  • The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system was investigated. Anaerobic digestion of swine wastewater gave volatile solids (VS) removal efficiencies of 43.3%, 52.1% and 54.5% for hydraulic retention times (HRTs) of 20, 30, 40 days, respectively. The removal efficiencies of VS, total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) decreased with increasing VS volumetric loading rate (VLR). Higher organic removal efficiency was observed at longer HRTs for the same VS volumetric loading rate. As VS volumetric loading rate increased, biogas production increased and the methane content of the biogas decreased. Experiments using duckweed (Lemna species) as an aquatic macrophyte gave the following results. In the case of nitrogen, removal efficiency was above 60% and effluent concentration was below 10.0 mg/L when the influent ammonia-N loading was about $1.0\;g/m^2/day$. In the case of phosphorus, removal efficiency was above 55% and effluent concentration was below 2.0 mg/L when the influent $PO_4$-P loading was about $0.15\;g/m^2/day$. In addition, crude protein and phosphorus content of duckweed biomass increased from 15.6% to 41.6% and from 0.8% to 1.6%, respectively, as the influent nutrient concentration increased. The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system offers good performance in terms of organics and nutrient removal for relatively low operation and maintenance costs. The results indicate that under appropriate operational conditions, the effluent quality is within the limits set by Korean discharge criteria.

Application of magnetic activated sludge process for a milking parlor wastewater treatment with nitrogen and phosphorus recovery

  • Onodera, Toshihito;Sakai, Yasuzo;Kashiwazaki, Masaru;Ihara, Ikko;Lal, Saha Mihir
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.20-25
    • /
    • 2021
  • Milking parlor wastewater contains high concentration suspended solid (SS), nitrogen, and/or phosphate as well as organic compounds. A new biological wastewater process by magnetic separation, magnetic activated sludge (MAS) process, was applied to milking parlor wastewater treatment process. A three step wastewater treatment process of coagulation sedimentation / ammonia stripping (C/S), magnetic activated sludge process and contact oxidation (CO) was proposed for removal of these pollutants. First step, C/S process recovered 96% TN and 96% PO43--P as resource for fertilizer from the wastewater. 81% biochemical oxygen demand (BOD) in wastewater was removed after MAS process. As a results, all pollutant concentrations satisfied Japanese effluent standards. Most of residual BOD and SS were removed by the CO process. It was estimated that the proposed process could reduce the process space to 1/7.

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구 (The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory)

  • 김태윤;권용주;강충현;김종영;신현석;권순철;차성민
    • 한국습지학회지
    • /
    • 제20권3호
    • /
    • pp.263-271
    • /
    • 2018
  • 생활 하수 및 농축산 폐수를 통한 하천으로의 다량의 질소와 인의 유입은 부영양화를 초래하여 하천 자정작용에 악영향을 끼친다. 본 연구에서는 컬럼 실험을 통한 흡착제(활성탄, 제올라이트, 여과사)의 여재층 높이에 따른 암모니아성 질소, 인산염 제거특성을 분석하고, 밀도범함수이론(density functional theory, DFT)를 바탕으로 한 양자역학적 전산 모사를 통해 흡착제와 암모니아성질소($NH_4{^{+}}$)와 인산염($PO_4{^{3-}}$)에 대한 화학적 흡착 거동을 분석하였다. 컬럼 실험 결과, 암모니아성 질소에 대한 제거효율은 제올라이트(95.1%)>활성탄(65.8%)>여과사(10.7%), 인산염의 제거효율은 활성탄(99.6%)>제올라이트(18.8%)>여과사(10.9%) 순으로 나타났다. 제올라이트의 경우, 여재층의 높이에 관계없이 90%이상의 암모니아성 질소에 대한 높은 흡착력을 가졌고, 활성탄의 경우 여재층의 높이가 증가할수록 인과 질소에 대한 높은 흡착효율을 가졌다. DFT를 이용한 흡착제(산화 알루미늄, 활성탄, 여과사)와 영양염류($PO_4{^{3-}}$, $NH_4{^{+}}$)에 대한 흡착거동 분석결과, 제올라이트는 암모니아성 질소($NH_4{^{+}}$)에 대한 높은 흡착에너지(-6.43 eV)를 가졌다. 활성탄의 경우 여과사보다 좁은 HOMO-LUMO 밴드갭을 가져, 전자 이동에 유리한 환경을 조성하여 높은 흡착에너지(-7.10eV)로 영양염류가 제거되는 것을 확인할 수 있었다.