• Title/Summary/Keyword: amino acid sequence analysis

Search Result 891, Processing Time 0.023 seconds

Sequence and phylogenetic analysis of the phnS gene encoding 2-hydroxychromene-2-carboxylate isomerase in Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77 균주에서 2- hydroxychromene-2-carboxylate isomerase를 암호화하는 phnS 유전자의 염기서열과 상동성 분석)

  • 엄현주;강민희;김영필;김성재;김영창
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.123-127
    • /
    • 2003
  • Sphingomonas chungbukensis DJ77 is able to metabolize phenanthrene as the sole carbon and energy source. The plasmid pUPX5 includes phnS gene encoding 2-hydroxychromene-2-carboxylate (HCCA) isomerase, which is needed for phenanthrene and naphthanene degradation. We determined the nucleotide sequence of DNA fragment of 3271 bp which included the phnS gene. The fragment included an open reading frame of 594 bp which has ATG initiation codon and TAA termination codon and GGAA ribosomal binding site. The predicted amino acid sequence of the enzyme consists of 198 amino acids. The deduced amino acid sequence of the phnS enzyme exhibited 94% identity with that of the corresponding enzyme in Sphingomonas aromaticivorans F199. The phnS gene is located downstream and in the same operon as phnQ and phnR, encoding a 2,3-dihydroxybiphenyl 1,2-dioxygenase and a ferredoxin component of biphenyl dioxygenase, respectively.

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • Park, Dong-Woo;Kim, Youngsoo;Lee, Sang-Mahn;Ka, Jong-Ok;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-280
    • /
    • 2000
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as rarbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

  • PDF

Molecular cloning and expression of black rockfish Sebastes schlegelii p47-phox (neutrophil cytosolic factor 1)

  • Kim, Ki-Hyuk;Baeck, Gun-Wook;Kim, Mu-Chan;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2009
  • The black rockfish Sebastes schlegelii neutrophil cytosolic factor components p47 phox (phagocyte oxidase) cDNA was cloned. The sequence of the cDNA showed that rockfish p47 phox cDNA consisted of 1,952 bp contained open reading frame encoding predicted polypeptide of 420 amino acids. Additionally analysis of the p47 phox amino acid sequence showed two potential SH3 domains. The functional domains are highly conserved in many animals, though the sequence of the components of the black rockfish showed low homology with that of mammals. The deduced amino acid sequence of the black rockfish p47 phox was similar to those of the carp (60.4%), zebrafish (59,2%), rainbow trout (68.5%), xenopus (55.2%), mouse (54.2%), rabbit (54.5%), rat (53.7%), and chicken (50.9%). The expression of the rockfish p47 phox molecule was induced in peripheral blood leukocytes (PBLs) from 1 to 12 h following LPS stimulation, with a peak at 6 h after the stimulation, and which increased at 1, 3, and 12 h after treated with Poly I:C compared with the control. The rockfish p47 phox gene was expressed in various tissues of healthy fish. The level of p47 phox expression was high in the PBLs, kidney and spleen.

Cloning and Characterization of Novel Soluble Acid Invertase Which is Responsible to JA, ABA and GA During Tip Growth of Pea Seedlings (Pisum sativum)

  • Kim, Dong-Giun;Zhang, Jiesheng
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.406-413
    • /
    • 2009
  • The enzyme invertase contributes to sugar unloading, pathogen defense, differentiation and development in plants. We cloned the complete cDNA of a soluble acid invertase from pea seedlings (Pisum sativum) via RT-PCR and the rapid amplification of the cDNA end (RACE) technique. The full-length cDNA of the soluble pea invertase comprised 2237 bp and contained a complete open reading frame encoding 647 amino acids. The deduced amino acid sequence showed high homology to soluble acid invertases from various plants. Northern blot analysis demonstrated the soluble acid invertase gene of P. sativum was strongly expressed in sink organs such as shoot tips and root tips, and induced by abscisic acid, gibberellic acid and jasmonic acid in shoots. Especially, gibberellic acid enhanced the gene expression of the soluble acid invertase in a time-dependent manner. This study presents that the gene expression patterns of a soluble acid invertase from pea are strongly consistent with the suggestion that individual invertase gene product has different functions in the growing plant.

Characterization of a Myostatin-like Gene from the Scallop Patinopecten yessoensis

  • Kim, Hyun-Woo;Kim, Hak-Jun;Yoo, Myong-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Myostatin (GDF8) is a growth factor that limits muscle tissue growth and development in vertebrates. We isolated a myostatin-like gene (Py-MSTN) from the marine invertebrate, the scallop Patinopecten yessoensis. Py-MSTN was highly expressed in the adductor muscle and in the gill unexpectedly. Amino acid analysis showed that Py-MSTN has 49% amino acid sequence identity and 64% similarity to human myostatin (Hs-MSTN), and 42% identity and 61% similarity to myoglianin, the only invertebrate homolog. These results indicated that Py-MSTN may be functionally similar to the vertebrate MSTN than the invertebrate homolog. Phylogenetic analysis suggested that Py-MSTN is an ancestral form of vertebrate MSTN and GDF11 and does not belong to other $TGF-{\beta}$ family members. Molecular modeling showed that Py-MSTN exhibits a similar tertiary structure to mammalian BMP7, a member of $TGF-{\beta}$ family. In addition, the amino acid residues which contact extracellular domain of the receptor were relavively conserved. Given these results, we propose that Py-MSTN is a functionally active member of the $TGF-{\beta}$ family and is involved In muscle growth and regulation.

Molecular Cloning of a cDNA Encoding Putative Calreticulin from the Silkworm, Bombyx mori

  • Kim, Seong-Ryul;Lee, Kwang-Sik;Kim, Iksoo;Kang, Seok-Woo;Nho, Si-Kab;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.93-97
    • /
    • 2003
  • We describe here the cloning of a cDNA encoding putative calreticulin (CRT) from the silkworm, Bombyx mori. The CRT cDNA comprised of 1,194 bp encoding 398 amino acid residues. B. mori. CRT has a HDEL sequence at the end of the C-domain. The B. morl, CRT showed 88% protein sequence identity to the G. mellonella CRT, 71 % to A. aegypti CRT, and 63% to H. sapiens CRT, Phylogenetic analysis revealed that the deduced amino acid sequences of the B. mori CRT formed a highly inclusive subgroup with other insect CRTs. Northern blot analysis exhibited an expression of the B. mori CRT gene in the fat body, evidencing the fat body as a major site for CRT synthesis.

Cloning, DNA Sequence Determination, and Analysis of Growth-Associated Expression of the sodF Gene Coding for Fe- and Zn-Containing Superoxide Dismutase of Streptomyces griseus

  • Kim, Ju-Sim;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.700-706
    • /
    • 2000
  • Iron- and zinc-containing superoxide dismutase (FeZnSOD) and nickel-containing superoxide dismutase (NiSOD) are cytoplamic enzymes in Streptomyces griseus. The sodF gene coding for FeZnSOD was cloned from genomic Southern hybridization analysis with a 0.5-kb DNA probe, which was PCR-amplified with facing primers corresponding to the N-terminal amino acid of the purified FeZnSOD of S. griseus and a C-terminal region which is conserved among bacterial FeSODs and MnSODs. The sodF open reading frame (ORF) was comprised of 213 amino acid (22,430 Da), and the deduced sequence of the protein was highly homologous (86% identity) to that of FeZnSOD of Streptomyces coelicolor. The FeZnSOD expression of exponentially growing S. griseus cell was approximately doubled as the cell growth reached the early stationary phase. The growth-associated expression of FeZnSOD was mainly controlled at the transcriptional level, and the regulation was exerted through the 110 bp regulatory DNA upstream from the ATG initiation codon of the sodF gene.

  • PDF

Characterization of a Gene Encoding Diaminopimelate Decarboxylase from Rice

  • Kim, Jung-Sup;Lee, Soon-Dong
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.197-201
    • /
    • 2006
  • Diaminopimelate decarboxylase (DAPDC, EC 4.1.1.20) catalyzes the conversion of diaminopimelate into lysine (Lys), which is the last step in Lys biosynthetic pathway. The genes for DAPDC have been reported in many bacteria, and more recently in Arabidopsis. Here we report characterization of a gene for DAPDC from rice (OsDAPDC). Sequence analysis of a cDNA clone revealed a full-length open reading frame for OsDAPDC that encoded 490 amino acids, approximately 53.2 kDa protein. The OsDAPDC protein contains a consensus binding site for pyridoxal-5'-phosphate as a cofactor and has a sequence at the amino terminus that resembles a transit peptide for localization to plastids, similar to that of Arabidopsis. Single gene encoding DAPDC was found in chromosome II in rice. The predicted amino acid sequence of OsDAPDC is highly homologous to that of the enzymes for DAPDC encoded by lysA of many bacteria. Expression of OsDAPDC in lysA mutants of Escherichia coli shows that the gene is able to functionally complement the mutants. These results suggest that OsDAPDC encodes a protein for diaminopimelate decarboxylase in rice.

Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]

  • Singh, Kashmir;Kumar, Sanjay;Yadav, Sudesh Kumar;Ahuja, Paramvir Singh
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • Tea leaves are major source of catechins—antioxidant flavonoids. Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is one of the important enzymes that catalyzes the reduction of dihydroflavonols to leucoanthocyanins, a key ''late'' step in the biosynthesis of catechins. This manuscript reports characterization of DFR from tea (CsDFR) that comprised 1,413 bp full-length cDNA with ORF of 1,044 bp (115-1,158) and encoding a protein of 347 amino acids. Sequence comparison of CsDFR with earlier reported DFR sequences in a database indicated conservation of 69-87% among amino acid residues. In silico analysis revealed CsDFR to be a membrane-localized protein with a domain (between 16 and 218 amino acids) resembling the NAD-dependent epimerase/dehydratase family. The theoretical molecular weight and isoelectric point of the deduced amino sequence of CsDFR were 38.67 kDa and 6.22, respectively. Upon expression of CsDFR in E. coli, recombinant protein was found to be functional and showed specific activity of 42.85 nmol $min^{-1}$ mg $protein^{-1}$. Expression of CsDFR was maximum in younger rather than older leaves. Expression was down-regulated in response to drought stress and abscisic acid, unaffected by gibberellic acid treatment, but up-regulated in response to wounding, with concomitant modulation of catechins content. This is the first report of functionality of recombinant CsDFR and its expression in tea.

Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

  • Jiang, Ming Feng;Hu, Ming Jun;Ren, Hong Hui;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1774-1783
    • /
    • 2015
  • Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector $pPICZ{\alpha}A$ and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.