• Title/Summary/Keyword: amino acid complex

검색결과 279건 처리시간 0.028초

Purification and Acetylation of Protein X Subunit of Pyruvate Dehydrogenase Complex (PDC) from Bovine Kidney

  • Ryu, Ryu;Song, Byoung-J.;Hong, Sung-Youl;Huh, Jae-Wook
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.502-506
    • /
    • 1996
  • Protein X is one of the subunits of pyruvate dehydrogenase complex. The biological role of this protein has not been fully elucidated, mainly because of the difficulty in its dissociation from the tightly bound dihydrolipoamide acetyltransferase-protein X subcomplex. We have found that the detachment of protein X from acetyltransferase subunit can be easily accomplished by the cycles of freezing and thawing proces. Several lines of evidence including sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequence analysis and acetylation with $[2^{14}C]$ pyruvate confirmed that the purified protein is protein X. The purified intact form of protein X was acetylated by $[2^{14}C]$ pyruvate in the presence of py-ruvate dehydrogenase subunit.The acetylation efficiency of this protein was lower than that of acetyltransferase and was not affected by the presence of acetyltransferase.

  • PDF

MgADP 결합 및 아미노산 치환 Nitrogenase Fe 단백질의 구조 및 기능 분석 (Structural and Functional Analysis of Nitrogenase Fe Protein with MgADP bound and Amino Acid Substitutions)

  • Jeong, Mi-Suk;Jang, Se-Bok
    • 생명과학회지
    • /
    • 제14권5호
    • /
    • pp.752-760
    • /
    • 2004
  • Nitrogenase 촉매에서 Fe-단백질을 포함하는 [4Fe-4S] 클라스터의 기능은 기질의 결합과 환원 자리를 포함하는 MoFe-단백질로 핵산 의존 전자 주개로 작용하는 것이다. 이러한 방법의 Fe-단백질의 기능은 Mofe-단백질과 상호작용을 위해 적합한 구조를 갖추며 전자 전달을 위한 추진력을 제공하기 위해 산화 환원 퍼텐셜을 변화시키는 능력에 의존한다. Nitrogenase Fe-단백질에 MgADP가 결합한 (혹은 떨어진) 구조적 정보는 핵산 결합 자리로부터 MoFe-단백질과의 결합력을 조절하기 위한 장거리 상호작용 메커니즘을 제시한다. 스위치 I과 II의 두 가지 경로가 뉴클레오티드의 신호전달 메커니즘을 담당한다. MgADP가 결합된 Fe-단백질의 구조는 Fe 단백질이 핵산과 결합할 때 관찰되는 [4Fe-4S] 클라스터의 생물리학적 특성 변화의 기초를 제공한다. 스위치, I과 II의 핵산 의존 신호전달 경로에서 특정 아미노산이 치환된 nitrogenase Fe-단백질의 구조들이 X-선 회절법에 의해서 결정되었다. 이들 경로는 아미노산 치환 연구, 구조 분석, 유사한 핵산 의존 신호전달 경로에 이용된 다른 단백질 등에 의해서도 분석되었다. 이들 경로가 거대분자 착물 형성과 분자간 전자 전달을 위한 MgADP 결합과 가수분해의 신호전달 경로로의 타당성이 조사되었다. 이러한 결과는 nitrogenase Fe 단백질과 MoFe-단백질 착물에서 Fe-단백질의 변이와 상호작용의 생물리학적 및 생화학적 특성을 위한 기초적 자료를 제공할 것이다.

Nutritional Requirements of Prevotella sp. Isolated from the Rumen of the Goat

  • Shin, Hyung-Tai;Lee, Soo-Won;Park, Ki-Moon;Kim, Byung-Tae;Son, Jin-Hyuk;Lee, Jae-Heung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권4호
    • /
    • pp.313-317
    • /
    • 2004
  • The nutritional requirements for Prevotella sp. 4PCCNB2 isolated from the rumen of a native goat in Korea and those of the ATCC 19189 strain isolated from the bovine rumen were investigated. The two strains grew well with ammonium sulfate as the sole added nitrogen source. However, neither a complex of amino acids nor casein hydrolysate effectively replaced ammonium sulfate. Biotin, p-aminobenzoic acid, and vitamin $B_12$ were essential to culture the ATCC 19189 strain. Unlike the ATCC 19189 strain, however, $B_12$ was only stimulatory for the growth of the 4PCCNB2 strain. The 4PCCNB2 strain grew well in the basal medium without an individual acid such as acetic acid or valeric acid. In contrast, either acetic or valeric acid was absolutely required for the growth of the ATCC 19189 strain.

Nutritional Requirements of Actinomyces Isolated from Rumen of Goat

  • Park, Ki Moon;Shin, Hyung Tai;Kang, Kook Hee;Lee, Jae Heung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권1호
    • /
    • pp.61-65
    • /
    • 2005
  • The objective of this work was to investigate the nutritional requirements for the growth of Actinomyces sp. 9RCC5 isolated from the rumen of a native goat in Korea. The growth of strain 9RCC5 on the basal medium or the medium minus certain ingredients from the basal medium demonstrated that strain 9RCC5 showed absolute requirement of vitamin B complex mixture, while hemin and volatile fatty acids (VFA) were stimulatory to growth to some extent. The 9RCC5 strain grew well with casein hydrolysate as the sole added nitrogen source. However, neither a complex of 18 amino acids nor ammonium sulfate effectively replaced casein hydrolysate. Vitamins such as riboflavin and pantothenate were essential for growth, while thiamin and biotin were stimulatory. With regard to VFA, the growth was stimulated by acetic acid but inhibited by valeric acid. Relatively large quantities of $Na^+$, $K^+$ and $Ca^{2+}$ were absolutely required for growth. Supplementation of clarified rumen fluid to the basal medium in a range of 0-10% (vol/vol) resulted in an increased rate of growth as well as an increased extent of growth.

Molecular Cloning of Chicken Major Histocompatibility Complex Class II Molecules

  • Sung, Aree-Moon
    • Toxicological Research
    • /
    • 제8권2호
    • /
    • pp.331-342
    • /
    • 1992
  • The chicken major histocompatibility complex (MHC), the B complex, is beginning to be analyzed at the DNA level. Inbred lines of chickens have been reported to possess 3~5 MHC class II genes. To further analyzed the molecular structure of the chicken MHC class II genes, cDNA clones coding for chicken MHC class II (B-L) ${\beta}$ chain molecules were isolated from chicken spleen and liver. Tissue-specific transcription of B-L ${\beta}$genes was studied by Northern blot analysis. A high level of expression was detected for spleen poly(A)$^+$ RNA whereas a faint signal was detected for liver poly(A)$^+$ RNA. Twenty-nine cDNA clones were isolated from the spleen and eight cDNA clones were isolated from the liver. Based on restriction maps, most clones could be clustered into one family of genes. Four cDNA clones were sequenced (S7, S10 and S19 from the spleen and L1, which was identical to S19, from the liver). Complete amino acid sequences of B-L ${\beta}$ chain molecules were predicated from the nucleotide sequences of the cDNA clones. Although both the nature and the location of the conserved residues were similar in chicken and mammalian sequences, some species-specific differences were found, suggesting that the structures of the B-L molecules are similar, but not identical to their mammalian counterparts.

  • PDF

종자내 아미노산 합성 조절 유전자에 관한 연구 (Amino Acid Biosynthesis and Gene Regulation in Seed)

  • 임용표;서미정;조수진;이정희;이효연
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

전해질 수용액에서 L-Alanine의 활동도계수와 용해도의 측정 및 모델링 (Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions)

  • 이봉섭;김기창
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.519-533
    • /
    • 2010
  • 본 연구에서는 L-형 아미노산인 L-Alanine과 무기염인 NaCl, KCl, $NaNO_3$$KNO_3$의 각 전해질로 이루어진 L-Alanine/전해질 수용액 계에서 L-Alanine의 활동도계수와 용해도를 298.15 K에서 측정하였다. L-Alanine의 활동도계수는 양이온 및 음이온의 선택성 전극으로 이루어진 화학전지에서 두 전극간의 기전력을 측정하는 전기화학 법으로 측정하였으며, 용해도는 L-Alanine의 고체상과 상평형을 이루고 있는 포화용액을 중량 분석하여 측정하였다. 한편 본 연구에서는 아미노산(L-Alanine)/전해질 수용액 계의 잔류(residual) Helmholtz 자유에너지를 섭동사슬-통계역학적 회합성유체이론(perturbed chain-statistical associating fluid theory)과 단순-평균구근사(primitive-mean spherical approximation)이론을 결합한 관계로 모델링 하였으며, 이로부터 아미노산의 활동도계수 및 용해도에 대한 열역학적 관계식을 얻었다. Helmholtz 자유에너지를 모델링 하는 과정에서는 아미노산은 양쪽성 이온(zwitterion) 형태로 존재하며 아미노산의 양쪽성 이온은 같은 이온끼리 자기-회합(self-association)하며 동시에 물분자와 교차-회합(cross-association)하는 회합체로 가정하였으며, 또한 아미노산의 양쪽성 이온이 전해질(무기염)로부터 해리된 양이온 및 음이온과 상호작용하여 이온복합체(ion complex)를 형성하는 과정을 회합현상으로 가정하였다. 본 연구에서 제안된 이론적 모델로부터 L-Alanine/전해질 수용액 계에서 계산되는 L-Alanine의 활동도계수 및 용해도 값은 본 연구의 실험값과 일치하는 경향을 보였다.

Preparation of Novel Iron Phthalocyanine Containing Reactive Groups and its Deodorizing Property on Cellulose

  • Kim, Eun-Mi;Choi, Jae-Hong
    • 한국염색가공학회지
    • /
    • 제25권4호
    • /
    • pp.247-253
    • /
    • 2013
  • The enzyme-like catalytic functions of metal complex phthalocyanine derivatives those containing carboxylic acid groups could be applied as odor-removing systems and antibacterial systems. Pyromellitic dianhydride and 4-nitrophthalimide were used as starting material for synthesizing dinitro-tetracarboxylic acid iron phthalocyanine(compound 1). Then diamino-tetracarboxylic phthalocyanine(compound 2) was obtained by reduction of compound 1. For the formation of covalent bond with cellulose fiber, cyanuric chloride was introduced to the amino group of compound 2 by condensation reaction compound 3. The exhaustion method was employed for adsorbing compound 3 on cotton fiber. K/S values of each fabrics were measured by a CCM system and deodorizing rates were tested by a detector tube method for ammonia gas. K/S values of treated cotton fiber with compound 3 were arranged from 2.1 to 4.2 at $90^{\circ}C$ of exhaustion temperature. Deodorizing rates provided result of 81%, 84%, 88%, 91%, by passing time of 30 min, 60 min, 90 min, 120 min, respectively.

효소 및 미생물 복합체를 사용한 인비트로 루왁 커피의 품질 특성 (Quality characteristics of in vitro luwak coffee produced using enzyme and microbial complexes)

  • 강혜미;오신영;강혜민;권중호;정용진
    • 한국식품저장유통학회지
    • /
    • 제30권2호
    • /
    • pp.287-299
    • /
    • 2023
  • 효소 및 미생물 복합제를 사용하여 인비트로 발효 루왁커피를 제조하여 non-fermented coffee beans(NFC)과 fermented coffee beans(FC)의 커피 품질을 비교하였다. 총유리아미노산 함량은 NFC가 254.01±4.89 mg/mL, FC가 264.15±16.80 mg/mL로 FC의 함량이 다소 높은 것으로 확인되었다. 이때 NFC는 glutamic acid, γ-aminon-butyric acid 등이 높았으나, FC는 lysine, leucine, valine 등 필수아미노산의 함량이 높았다. 커피 생두의 발효과정은 sucrose의 감소와 fructose 및 glucose의 유의적인 증가를 가져왔다. 커피 추출물의 색도는 NFC에 비해 FC 시료에서 높은 명도(L)와 적색도(a) 및 황색도(b)를 보였다. 카페인 함량은 NFC 1,130.22±1.55 ㎍/mL, FC 696.94±0.04 ㎍/mL로써 발효 후 약 38%의 카페인이 감소되었다. 폴리페놀 및 클로로겐산 함량은 NFC에서 각각 2.31±0.01 mg GAE/mL와 531.81±27.32 ㎍/mL, FC에서 각각 2.03±0.07 mg GAE/mL와 264.46±2.47 ㎍/mL로 발효에 따라 떫은맛 관련 성분의 함량이 유의적으로 감소됨을 알 수 있었다. 전자코 분석에서 NFC와 FC의 휘발성 향성분의 차이가 뚜렷함이 확인되었고, methylethyl formate, 2-methyl-1, 3-cyclopentadiene, 2-chloro-2-methylbutane, 2-methylbutanal 등의 휘발성 화합물이 발효 후 높은 강도로 감지되었다. 관능 평가에서는 NFC 추출물보다 FC 추출물의 aroma, body, aftertaste, overall에서 높은 관능 평점을 보여주었다(p<0.001). 이상의 결과에서 효소 및 미생물 복합제를 사용한 커피 생두의 발효는 유효 성분들의 변화를 일으켜 커피 원두의 로스팅 과정 중 Maillard 반응을 촉진함으로써, 향미가 증가되고 카페인 함량이 감소된 인비트로 루왁 커피의 제조 가능성을 시사하였다.

Ligand Binding Properties of the N-Terminal Domain of Riboflavin Synthase from Escherichia coli

  • Lee, Chan-Yong;Illarionov, Boris;Woo, Young-Eun;Kemter, Kristina;Kim, Ryu-Ryun;Eberhardt, Sabine;Cushman, Mark;Eisenreich, Wolfgang;Fischer, Markus;Bacher, Adelbert
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.239-246
    • /
    • 2007
  • Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7- dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains. Recombinant expression of the N-terminal domain is known to provide a $C_2$-symmetric homodimer. In this study, the binding properties of wild type as well as two mutated proteins of N-terminal domain of riboflavin synthase with various ligands were tested. The replacement of the amino acid residue A43, located in the second shell of riboflavin synthase active center, in the recombinant N-terminal domain dimer reduces the affinity for 6,7-dimethyl-8-ribityllumazine. The mutation of the amino acid residue C48 forming part of activity cavity of the enzyme causes significant $^{19}F$ NMR chemical shift modulation of trifluoromethyl derivatives of 6,7-dimethyl-8-ribityllumazine in complex with the protein, while substitution of A43 results in smaller chemical shift changes.