• Title/Summary/Keyword: amine catalysts

Search Result 28, Processing Time 0.026 seconds

Effects of Amine Catalysts on Structure of Polyurethane Foams

  • Furukawa, Mutsuhisa;Takamatsu, Katsuhiro
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.285-291
    • /
    • 1999
  • Effects of catalysts on network structure, hard segment length and distribution of polyurethane foams in the absence of catalysts were investigated. CFC free all MDI-based poly urethane foams were prepared from poly(ethylene adipate)glycol, 4,4'-diphenylmethane diisocyanate, and water. Amino catalysts used were 1,4-diazabicyclo[2,2,2]octane(DABCO), N, N,N',N'-tetramethyl--hexane-1,6-diamine(MR), bis(2-methylamino ethyl)ether(ET), 1,8-diazabicyclo-[5,4,0]-undecene-7(DBU). Dibutyltindilaurate(DBTL) as control was also used. Hard segment components of polyurethane foams were obtained by a selective degradation of polyester chains with 0.01N KOH-methanol solution. The PUFs with DBU catalyst contained more amount of isocyanurate components than other PUFs. On the other hand, the PUFs with ET, MR, DBTL catalysts contained more amount of allophanate and biuret component than the other PUFs.

  • PDF

Knoevenagel Condensation Reaction Using Amine-functionalized MCM-41 Base Catalysts (아민고정화 MCM-41 염기촉매를 이용한 Knoevenagel 축합반응)

  • Choi, Jung-Sik;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.417-423
    • /
    • 2006
  • A series of amine functionalized MCM-41 catalysts were prepared by aminopropyltrimethoxysilane grafting and their catalytic performance in Knoevenagel reaction of selected substrates was investigated. Water resistant and catalytically active amine grafted MCM-41 was prepared by post-synthetic silylation using methyltrimethoxysilane ; hydrogen bonding of the water molecules formed during the condensation reaction to the active N group was suppressed, which led to high TON of the reaction. Amine functionalized MCM-41 prepared by coating method produced high conversion, but the TON of the catalyst was much lower than that of the amine grafted MCM-41; pore volume of the functionalized MCM-41 decreased substantially and large portion of the immobilized amine is believed to be hydrogen bonded to each other, which can result in decrease in the basicity of the N group. A secondary amine group was prepared by room temperature condensation between aminopropylsilane and chloropropylsilane, and the MCM-41 grafted with the secondary amine group demonstrated the highest catalytic activity among the catalysts prepared.

Catalyst-aided Regeneration of Amine Solvents for Efficient CO2 Capture Process

  • Bhatti, Umair H.;Sultan, Haider;Cho, Jin Soo;Nam, Sungchan;Park, Sung Youl;Baek, Il Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-12
    • /
    • 2019
  • Thermal amine scrubbing is the most advanced CO2 capture technique but its largescale application is hindered due to the large heat requirement during solvent regeneration step. The addition of a solid metal oxide catalysts can optimize the CO2 desorption rate and thus minimize the energy consumption. Herein, we evaluate the solvent regeneration performance of Monoethanolamine (MEA) and Diethanolamine (DEA) solvents without and with two metal oxide catalysts (TiO2 and V2O5) within a temperature range of 40-86℃. The solvent regeneration performance was evaluated in terms of CO2 desorption rate and overall amount of CO2 desorbed during the experiments. Both catalysts improved the solvent regeneration performance by desorbing greater amounts of CO2 with higher CO2 desorption rates at low temperature. Improvements of 86% and 50% in the CO2 desorption rate were made by the catalysts for MEA and DEA solvents, respectively. The total amount of the desorbed CO2 also improved by 17% and 13% from MEA and DEA solvents, respectively. The metal oxide catalyst-aided regeneration of amine solutions can be a new approach to minimize the heat requirement during solvent regeneration and thus can remove a primary shortfall of this technology.

A Study on Synthesis Catalysts for Vinylester Resin (비닐에스테르 수지의 합성촉매에 관한 연구)

  • Hong, Suk-Pyo;Choi, Sang-goo
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.229-237
    • /
    • 1991
  • Vinylester was syntheszed in the presence of amine and metal catalysts, such as triethylamine(TEA), triethylbenzyl ammonium chloride (TEBAC), cetyltrimethyl ammonium bromide (CTMAB), chromium acety] acetate (CAA), and triphenylantimony (TPA). Apropriate use of amine and organometal catalysts were 1.7~2.2 % (Wt. %), 2.5~3.1 % (Wt %) of charged methacrylic acid (MAA) in respect of reactivity, gel-time, and storage stability. The Order of reactivity was TEA>TEBAC>CTMAB>CAA>TPA. Temperature independence of catalyst showed more large deviation above $110^{\circ}C$. Storage stability could be improved without delay of gel-time by adding TPA in 2.0 % (Wt %) of charged MAA after synthesis.

  • PDF

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

Solvent-Free Michael Addition Between EMME and Secondary Amine under Focused Microwave Irradiation

  • Kim, Ki-Won;Lee, Hee-Jung;Jo, Jeong-Im;Kwon, Tae-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1155-1158
    • /
    • 2010
  • Microwave-assisted Michael reaction between EMME and various amines such as diphenylamine, 4-methyl-N-phenylbenzenamine, N-phenylnaphthalen-1-amine, dihexylamine, diisopropylamine, and 4-nitrobenzenamine were described. Solvent-free conditions on alumina as solid support in the presence of $K_2CO_3$ catalysts gave moderate to good yields (55 - 93%) of diethylmalonate analogues having enamine moieties under focused microwave irradiation.

Development of Ferrocene-Containing Metal Catalysts for Asymmetric Synthesis (페로센을 이용한 비대칭 유기합성용 금속 촉매의 개발)

  • Oh, Yunghee;Choi, Mi-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.804-807
    • /
    • 1999
  • New copper complexes with a ligand, L(L=N,N'-cyclohexane bis(ferrocenylmethylene)amine) which was obtained from ferrocene carboxaldehyde and 1,2-diaminocyclohexane with a mole ratio of 2:1, were prepared and characterized. Those were adapted to asymmetric catalysis. The copper(II) complexes do not work in cyclopropanation of styrene and ethyl diazoacetate but copper(I) complex catalyzes. The Cu(I)LOTf (OTf=trifluorometanesulfonate) shows a good regioselectivity giving high trans to cis ratio of up to 80:20.

  • PDF

Chemical Lithography by Surface-Induced Photoreaction of Nitro Compounds

  • Han, Sang-Woo;Lee, In-Hyung;Kim, Kwan
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • Searching for systems of self-assembled monolayers (SAMs) that can be used as templates for chemical lithography, we found that nitro groups on aromatic SAMs are selectively converted on Ag to amino groups by irradiation with a visible laser. 4-nitrobenzenethiol on Ag was thus converted to 4-aminobenzenethiol by irradiating it with an $Ar^+$ laser. This was evident from surface-enhanced Raman scattering (SERS) as well as from a coupling reaction forming amide bonds. The surface-induced photoreaction allowed us to prepare patterned binary monolayers on Ag that showed different chemical reactivities. Using the binary monolayers as a lithographic template, we induced site-specific chemical reactions, such as the selective growth of biominerals on either the nitro- or amine-terminated regions by adjusting the crystal-growth conditions. We also demonstrated that patterned, amine-terminated monolayers can be fabricated even on gold by using silver nanoparticles as photoreducing catalysts.

  • PDF

Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts (젤화 촉매의 종류 및 함량에 따른 경질 폴리우레탄 폼의 반응거동에 관한 연구)

  • Eom, Se Yeon;Lee, Hyeong Il;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • The reaction behavior of rigid polyurethane foams were studied on the effects of gelling catalysts of amine type, such as; dimethylcyclohexyl amine (DMCHA) and of potassium type, such as; potassium octoate (PO). Rigid polyurethane foams were provided with polymeric 4,4'-diphenylmethane diisocyanate, polyester polyol, silicone surfactant, blowing agent and a few gelling catalysts. As the contents of catalyst, DMCHA increased from 0 to 2.0 g, the reaction time decreased from ca. 330 to ca. 35 sec and due to the exothermic reaction, the maximum temperature increased from ca. 217 to ca. $234^{\circ}C$, respectively. As the contents of PO increased from 0 to 2.5 g, the reaction time decreased from ca. 79 to ca. 38 sec and the maximum temperature increased from ca. 182 to ca. $271^{\circ}C$, respectively. The kinetic parameters were calculated and the conversions were based on the temperature rising method of adiabatic process. As the content of DMCHA increased, the rate constant $k_0$ increased. But in the case of PO catalyst, $k_0$ did hardly depend upon its amount, and showed us similar reaction rate constants.