• Title/Summary/Keyword: ambient flow

Search Result 442, Processing Time 0.025 seconds

Thruster Modeling for Underwater Vehicle with Ambient Flow Velocity and its Incoming Angle (외부 유체의 영향을 고려한 무인잠수정의 추진기 모델)

  • Kim, Jin-Hyun;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.109-118
    • /
    • 2007
  • The thruster is the crucial factor of an underwater vehicle system, because it is the lowest layer in the control loop of the system. In this paper, we propose an accurate and practical thrust modeling for underwater vehicles which considers the effects of ambient flow velocity and angle. In this model, the axial flow velocity of the thruster, which is non-measurable, is represented by ambient flow velocity and propeller shaft velocity. Hence, contrary to previous models, the proposed model is practical since it uses only measurable states. Next, the whole thrust map is divided into three states according to the state of ambient flow and propeller shaft velocity, and one of the borders of the states is defined as Critical Advance Ratio (CAR). This classification explains the physical phenomenon of conventional experimental thrust maps. In addition, the effect of the incoming angle of ambient flow is analyzed, and Critical Incoming Angle (CIA) is also defined to describe the thrust force states. The proposed model is evaluated by comparing experimental data with numerical model simulation data, and it accurately covers overall flow conditions within 2N force error. The comparison results show that the new model's matching performance is significantly better than conventional models'.

  • PDF

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations (온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF

Influence of ambient groundwater flow on DNAPL migration in a fracture network

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.43-46
    • /
    • 2003
  • We consider influences of the aperture variation and the ambient groundwater flow on the migration of DNAPL within a fracture network. In context of a modified invasion percolation (MIP) growth algorithm, we formulate a mechanistic model that includes capillary and gravity forces as well as viscous forces within the DNAPL and the ambient groundwater. The MIP model is verified against laboratory experiments, which is conducted using a two-dimensional random fracture network model. The results show that the aperture variation and ambient groundwater flow can be significant factors controlling DNAPL migration path within fracture networks.

  • PDF

Effect of Ambient Gases on the Characteristics of ITO Thin Films for OLEDs

  • Lee, Yu-Lim;Lee, Kyu-Mann
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.203-207
    • /
    • 2009
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of ITO thin films intended for use as anode contacts in OLED (organic light emitting diodes) devices. These ITO thin films are deposited by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar+$O_2$, and Ar+$H_2$) at $300{^{\circ}C}$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.5 sccm to 5 sccm and from 0.01 sccm to 0.25 sccm, respectively. The intensity of the (400) peak in the ITO thin films increased with increasing $O_2$, flow rate whilst the (400) peak was nearly invisible in an atmosphere of Ar+$H_2$. The electrical resistivity of the ITO thin films increased with increasing $O_2$ flow rate, whereas the electrical resistivity decreased sharply under an Ar+$H_2$ atmosphere and was nearly similar regardless of the $H_2$ flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed an average transmittance of over 80% in the visible range. The OLED device was fabricated with different ITO substrates made with the configuration of ITO/$\alpha$-NPD/DPVB/$Alq_3$/LiF/Al in order to elucidate the performance of the ITO substrate. Current density and luminance of OLED devices with ITO thin films deposited in Ar+$H_2$ ambient gas is the highest among all the ITO thin films.

Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering

  • Jun, D.G.;Cho, H.H.;Jo, D.B.;Lee, K.M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.260-264
    • /
    • 2012
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of IZO thin films intended for use as anode contacts in the organic light emitting diodes (OLED) devices. These IZO thin films were deposited on the PES film by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2, and Ar + H2) at room temperature. In order to investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon has been changed from 0.1 sccm to 0.5 sccm, respectively. All the IZO thin film has an (222) preferential orientation regardless of ambient gases. The electrical resistivity of the IZO film increased with increasing O2 flow rate, whereas the electrical resistivity decreased sharply under an Ar + H2 atmosphere and was nearly similar regardless of the H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made with the configuration of IZO/α-NPD/DPVB/Alq3/LiF/Al in order to elucidate the performance of the IZO substrate. The current density and the luminance of OLED devices with IZO thin films deposited in 0.5 sccm H2 ambient gas are the highest amongst all other films.

Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization (주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구)

  • ;Park, Jung Kyu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.

DSMC Analysis of Pressure Effect on Low-Density Nozzle Flow

  • Chung, Chan-Hong;Kim, Kyung-Hoe
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • The flow in low-density plumes expanding into a region of finite pressure shows a quite different behavior from that observed in low-density plumes expanding into a vacuum. The flow structure in the plume varies depending on applied ambient and stagnation chamber conditions. In the present study, the direct simulation Monte-Carlo (DSMC) method based on molecular gas dynamics is employed in the analysis of low-density gas flows expanding through a small converging/diverging nozzle. Special attention has been paid to the effect of non-zero ambient and stagnation pressures on the flow structure which has rarely been studied using the DSMC method.

  • PDF

Experimental Study of Natural Convectiion Heat Transfer from a Horizontal Ice Cylinder Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 수평 얼음원기둥에 의해 야기되는 자연대류 열전달의 실험적 해석)

  • 유갑종;추홍록;문종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1019-1030
    • /
    • 1994
  • Natural convection heat transfer from a horizontal ice cylinder immersed in quiescent cold pure water was studied experimentally. The experiment was conducted for the ambient water temperatures ranging from $2.0^{\cric}C$ to $10.0^{\circ}C$. The flow fields around an ice cylinder and its melting shapes were visualized and local Nusselt numbers obtained. Especially, its attention was focused on the density maximum effects and stagnation point Nusselt number. From the visualized photographs of flow fields, three distinct flow patterns were observed with the ambient water temperature variation. The melting shapes of ice cylinder are various in shape with flow patterns. Steady state upflow was occured at the range of $2.0^{\circ}C \leq T_{\infty} \leq 4.6^{\circ}C$ and steady state downflow was occured at $T_{\infty} \geq 6.0^{\circ}C$. In the range of $4.7^{\circ}C < T_{\infty} < 6.0^{\circ}C$, three-dimensional unsteady state flow was observed. Especially, the melting shapes of ice cylinder have formed the several spiral flutes for the temperatures ranging from $5.5^{\circ}C$ to $5.8^{\circ}C$. For upflow regime, the maximum stagnation point Nusselt number exists at $T_{\infty} = 2.5^{\circ}C$ and as the ambient water temperature increases the Nusselt number decreases. At ambient water temperature of about $5.7^{\circ}C$, Nusselt number shows its minimum value.

A study on the development of constant temperature hot wire type air flow meter for automobiles (자동차용 정온도 열선식 공기유량계의 개발에 관한 연구)

  • 조성권;유정열;고상근;김동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2407-2414
    • /
    • 1992
  • Constant temperature hot wire air flow meter for automobiles requires temperature compensation system because hot wire output signal is sensitive to ambient temperature variations as well as fluid velocity. The objectives of the present study are to design an air flow meter circuit which is capable of compensating the hot wire output signal for ambient temperature variations and to investigate the mechanism of such temperature compensation. This circuit is composed of platinum hot wire, platinum resistor, two variable resistors, a constant resistor and a DC-amplifier. In particular, by simply replacing a constant resistor in one of the bridge arms of the conventional circuit with platinum resistor and a variable resistor for the purpose of temperature compensation, the deviation of output signal with respect to ambient temperature variations between 27deg. C 70deg. C could be reduced to less than 2.5% for mass flow rate and to less than 5% for velocity respectively. The mechanism of temperature compensation against ambient temperature variations was explained by means of measuring the heat transfer coefficient with hot wire temperature variations and analyzing and analyzing conventional empirical equations qualitatively.