• Title/Summary/Keyword: ambient field cancellation

Search Result 2, Processing Time 0.014 seconds

Detection of Opposite Magnetic Polarity in a Light Bridge : Its Emergence and Cancellation in association with LB Fan-shaped Jets

  • Lim, Eun-Kyung;Yang, Heesu;Yurchyshyn, Vasyl;Chae, Jongchul;Song, Donguk;Madjarska1, Maria S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2020
  • Light bridges (LBs) are relatively bright structures that divide sunspot umbrae into two or more parts. Chromospheric LBs are known to be associated with various activities including fan-shaped jet-like ejections and brightenings. Although magnetic reconnection is frequently suggested to be responsible for such activities, not many studies presented firm evidence to support the scenario. We carry out magnetic field measurements and imaging spectroscopy of a LB where fan-shaped jet-like ejections occur with co-spatial brightenings at their footpoints. We study their fine photospheric structures and magnetic field changes using TiO images, Near-InfraRed Imaging Spectropolarimeter data, and Hα data taken by the 1.6 m Goode Solar Telescope. As a result, we detect magnetic flux emergence in the LB that is of opposite polarity to that of the sunspot. The new flux cancels with the pre-existing flux at a rate of 5.6×1018 Mx hr-1. Both recurrent jet-like ejections and their footpoint brightenings are initiated at the vicinity of the magnetic cancellation, and show apparent horizontal extension along the LB at a projected speed of 4.3 km s-1 to form the fan-shaped appearance. Based on these observations, we suggest that the fan-shaped ejections may have resulted due to slipping reconnection between the new flux emerging in the LB and the ambient sunspot field.

  • PDF

So, You Need Reliable Magnetic Measurements You Can Use With Confidence? How the Magnetic Measurement Capabilities at NPL Can Help

  • Hall, Michael;Harmon, Stuart;Thomas, Owen
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.339-341
    • /
    • 2013
  • The magnetic field standards, facilities and capabilities available at NPL for the calibration of magnetometers and gradiometers and the measurement of the magnetic properties of materials will be introduced. The details of the low magnetic field facility will be explained and the capabilities this facility enables for the characterisation and calibration of ultra-sensitive room temperature magnetic sensors will be presented. Building on core material capabilities that are compliant with the IEC 60404 series of written standards, the example of a standard permeameter that has been modified for the measurement of strips for real world conditions is discussed. This was incorporated into a stress machine to measure the DC properties of the soft magnetic materials used by the partners of a collaborative industry led R&D project at stress levels of up to 700 MPa. The results for three materials are presented and the changes in the properties with applied stress compared to establish which material exhibits favourable properties.