• Title/Summary/Keyword: ambient air temperature

Search Result 568, Processing Time 0.023 seconds

The Blue and Red Luminescences from Ambient Air Aged Porous Silicon

  • Chang, S.S;Yoon, S.O;Choi, G.J;Kawakami, Y;Sakai, A
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • This paper reports on photoluminescence (PL), luminescence decay curves, and compositional analysis of porous silicon(PS) which is aged under air ambient by Fourier transform infrared vibrational spectroscopy (FTIR) and by Auger electron spectroscopy (AES). Porous silicos which has been aged under air ambient yields two PL band structures, i.e. blue/violet PL and red PL. The evolution of a blue/violet band is pronounced, especially for thin PS film which is prepared in dilute HF solution. The blue/violet PL band has been observed initially to increrase rapidly with aging, then saturated with further atmospheric aging. The ambient air aged PS exhibits a fast decay time of sub-nanosecond at room temperature and shows appreciably faster decay time than that at 20K. Atmospheric aging of this thin blue/violet luminescing PS yield non-stoichiometric oxide judging from the vibrational spectra of Si-O and AES analysis.

  • PDF

The Effect of Ambient Air Condition on Heat Transfer of Hot Steel Plate Cooled by an Impinging Water Jet

  • Lee, Pil-Jong;Park, Hae-Won;Lee, Sung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.740-750
    • /
    • 2003
  • It has been observed that the cooling capacity of an impinging water jet is affected by the seasonal conditions in large-scale steel manufacturing processes. To confirm this phenomenon, cooling experiments utilizing a hot steel plate cooled by a laminar jet were conducted for two initial ambient air temperatures (10$^{\circ}C$ and 40$^{\circ}C$) in a closed chamber, performing an inverse heat conduction method for quantitative comparison. This study reveals that the cooling capacity at an air temperature of 10$^{\circ}C$ is lower than the heat extracted at 40$^{\circ}C$. The amount of total extracted heat at 10$^{\circ}C$ is 15% less than at 40$^{\circ}C$ , These results Indicate the quantity of water vapor, absorbed until saturation, affects the mechanism of boiling heat transfer.

Simulation and Cost Estimation of Energy Transportation at Ambient Temperature Using an Absorption System (흡수식을 이용한 상온에너지수송의 모사 및 비용평가)

  • 김성수;오민규;전상현;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1028-1034
    • /
    • 2003
  • The objectives of this paper are to study the effect of key parameters on the cycle performance and capacity and to estimate the cost of latent and sensible energy transportation systems. The overall conductance (UA) of each component, the ambient temperature and the absorber inlet temperature are considered the key parameters. It is concluded that COP of the solution transportation using an absorption system (STA) at ambient temperature is 10% higher than that of the conventional sensible system. It is also found that the cost of STA system can be reduced 7.5 times to that of sensible energy transportation for one year of operation with 10 km transportation distance.

A Study on the Optimization of Condenser according to Design Factors in Heat Pump System (열(熱)펌프시스템에서 각종(各種) 설계인자(設計因子)들에 따른 응축기(凝縮器)의 최적설계(最的設計)에 관한 연구(硏究))

  • Lee, Y.S.;Kim, N.K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.408-417
    • /
    • 1988
  • This study optimized the condenser dimension of heat pump system with the heat sources which are solar irradiation and ambient air. At first, the author selected the principal design factors influencing the performance of heat pump system. And the author considered the variation of condenser dimension according to the variation of the selected design factors, that is, ambient air temperature, condenser temperature, degree of superheating, degree of sub-cooling and irradiation. As a result this study, among refrigerants R12, R22 and R500, refrigerant R22 has more heating output than R12 and R500, and the coefficient of performance on this heat pump system is not greatly influenced by the degree of superheating and degree of sub cooling. The ambient air temperature is below $5^{\circ}C$ at balance point and the optimal tube length of condenser dimension is about 3.8 m. Also the author gained the optimal design diagram for the optimization of condenser dimension according to various design factors.

  • PDF

Thermal Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump (열펌프에 의한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • The greenhouse heating system with heat pump was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air and soil and moisture content of soil in the greenhouse were developed, and its validity was justified by actual data. From the analysis of experimentally measured data and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the heating system with heat pump were very much close to the experimental values. 2. In the heating system with heat pump, the expected values of day time surface temperature of soil by computer simulation were very much similar to the measured values, but those of night time were higher than the measured value by at most 2.0$\^{C}$. 3. The simulation model predicted temperature of greenhouse film as of 1$\^{C}$ below than the mean value of ambient air and greenhouse air temperature. 4. Heat loss value of daytime was found to be larger than that of nigh as much as 1.3 to 2.3 times for the heating system with heat pump. 5. In the heating system with heat pump, when the lowest ambient temperature was -8$\^{C}$∼-7$\^{C}$ the air temperature of greenhouse was 5$\^{C}$∼6$\^{C}$, thus the heat pump heating system contributed in greenhouse heating by 13$\^{C}$.

  • PDF

A Study of Spray Characteristics of Injector on the Air-assisted Pressure Variation (보조 공기 압력 변화에 따른 인젝터의 분무 특성에 관한 연구)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.58-64
    • /
    • 1998
  • In the gasoline engine of fuel injection type, atomization of fuel droplet and its distribution has directly influenced the performance of engine and harmful emission. To investigate atomization characteristics of fuel spray, in this paper fuel spray of air-assisted injector is observed at the various initial conditions of ambient air temperature and air assisted pressure. Behavior of fuel spray is photographed with microscopic visualization system. The SMD of fuel droplet is measured with PMAS (Particle Motion Analysis System). The effect of air-assisted pressure and temperature of ambient air resulted in the decrement of SMD and its variation. Finally, It was found that It was found that from spray angle at the two-hole injector had measured $20{\pm}4$ degree the result of photographs by shadow graphy. The mean diameter of suns decreased and the of droplets increased with increasing the temperature in the spray fields by the results of PMAS measurement. It was found that the characteristics of sprays became finer by increasing the temperature of spray fields about 373K without the delivery of air-assistance.

  • PDF

The Effect of Ambient Air Condition on a Hot Steel Plate Cooled by Impinging Water Jet (주변공기조건이 충돌수분류에 의한 고온강판의 냉각에 미치는 영향 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Seung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2000
  • It is observed that the cooling capacity of impinging water jet is affected by the seasonal conditions in steel manufacturing process with large scale. To confirm this phenomena, the cooling experiments of a hot steel plate by a laminar jet were conducted for two different initial ambient air temperature($10^{\circ}C$ and $40^{\circ}C$) in a closed chamber, and an inverse heat conduction method is applied for the quantitative comparison. It is found that the cooling capacity under $10^{\circ}C$ air temperature is lower than that under $40^{\circ}C$, as is the saturated water vapor is more easily observed, and the amount of total extracted heat in the case of $10^{\circ}C$ is smaller by nearly 15% than that of $40^{\circ}C$ case. From these results, it is thought that the quantity of water vapor, which could be absorbed until saturation, effects on the mechanism of boiling heat transfer.

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation (물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).