• Title/Summary/Keyword: alzheimer's disease

Search Result 1,115, Processing Time 0.028 seconds

On the Early Diagnosis of Dementia by Nonlinear Analysis of the EEG in Alzheimer's Disease (알츠하이머 환자 뇌파의 비선형 분석을 통한 치매증의 조기진단에 관한 연구)

  • 이동형;이재훈
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.129-142
    • /
    • 1996
  • The early diagnosis has an very important role in curing dementia. But there was not the effective method to diagnose it until now. In this paper we analyzed the EEG of Alzheimer's disease patients and normal groups by nonlinear methods. In the analysis we calculated the correlation dimensions $D_2$ and the largest Lyapunov exponent $L_1$. We found that patients with Alzheimer's disease have significantly lower $D_2$ and TEX>$L_1$ than normal groups. It means that brains injured by Alzheimer's disease have electrophysiological inactive elements and have decreased chaotic behaviour. We propose the nonlinear analysis of the EEG as a useful tool for the early diagnosis of Alzheimer's disease.

  • PDF

Alzheimer's disease recognition from spontaneous speech using large language models

  • Jeong-Uk Bang;Seung-Hoon Han;Byung-Ok Kang
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.96-105
    • /
    • 2024
  • We propose a method to automatically predict Alzheimer's disease from speech data using the ChatGPT large language model. Alzheimer's disease patients often exhibit distinctive characteristics when describing images, such as difficulties in recalling words, grammar errors, repetitive language, and incoherent narratives. For prediction, we initially employ a speech recognition system to transcribe participants' speech into text. We then gather opinions by inputting the transcribed text into ChatGPT as well as a prompt designed to solicit fluency evaluations. Subsequently, we extract embeddings from the speech, text, and opinions by the pretrained models. Finally, we use a classifier consisting of transformer blocks and linear layers to identify participants with this type of dementia. Experiments are conducted using the extensively used ADReSSo dataset. The results yield a maximum accuracy of 87.3% when speech, text, and opinions are used in conjunction. This finding suggests the potential of leveraging evaluation feedback from language models to address challenges in Alzheimer's disease recognition.

A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images

  • Baydargil, Husnu Baris;Park, Jangsik;Kang, Do-Young;Kang, Hyun;Cho, Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3583-3597
    • /
    • 2020
  • In this paper, a parallel deep learning model using a convolutional neural network and a dilated convolutional neural network is proposed to classify Alzheimer's disease with high accuracy in PET/CT images. The developed model consists of two pipelines, a conventional CNN pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and at the end of both pipelines, extracted features are concatenated and used for classifying Alzheimer's disease. Complimentary abilities of both networks provide better overall accuracy than single conventional CNNs in the dataset. Moreover, instead of performing binary classification, the proposed model performs three-class classification being Alzheimer's disease, mild cognitive impairment, and normal control. Using the data received from Dong-a University, the model performs classification detecting Alzheimer's disease with an accuracy of up to 95.51%.

Effects of Jujadokseo-hwan on Mice with Alzheimer's Disease Induced by $Amyloid-{\beta}$ (주자독서환(朱子讀書丸)의 아밀로이드베타로 유발된 생쥐 알츠하이머모델에 대한 효과)

  • Leem, Kang-Hyun;Ko, Heung;Kyung, Hyuk-Su
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.253-264
    • /
    • 2006
  • Object: This research investigated effects of Jujadokseo-hwan on mice with Alzheimer's Disease induced by $amyloid-{\beta}$. According to Dongyibogam, Jujadokseo-hwan can cure amnesia. Amyloid-B is believed to induce oxidative stress and inflammation in the brain, postulated to play important roles in the pathogenesis of Alzheimer's disease. In this way $Amyloid-{\beta}$ induces Alzheimer's Disease. Methods : In order to make an efficient prescription and cope with dementia, learning and memory functions of mice were tested on passive avoidance test and V-maze task. $NF-{\kappa}B$ were measured from protein derived from the brain. RT-PCR was done for !gene analysis. Primers were protein kinase Band $NGF-{\alpha}$. Results : 1. Jujadokseo-hwan was effective for memory capacity on passive avoidance test. but noneffective for spatial memory capacity and locomotor activity on Y -maze task. 2. The measurement of $NF-{\kappa}B$ showed upward tendancies and the result of RT-PCR showed up-regulation when given Jujadokseo-hwan by mouth. Conclusion: Results suggest that Jujadokseo-hwan is effective on mice with Alzheimer's Disease induced by $amyloid-{\beta}$.

  • PDF

Cognitive improvement by ginseng in Alzheimer's disease

  • Lee, Soon-Tae;Chu, Kon;Kim, Jeong-Min;Park, Hyun-Jeong;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.51-53
    • /
    • 2007
  • Ginseng shows protective and trophic effects in neurodegenerative diseases in experimental models, and showed cognitive improvement in normal population. To investigate the efficacy of ginseng in patients with Alzheimer's disease, patients, who met NINDS-ADRDA criteria for AD were studied Subjects were randomly assigned to ginseng group and control group, and ginseng group was treated with Korean white ginseng powder (4.5 g/day) for 12 weeks. Efficacy variables included changes in mini-mental status exam (MMSE) and cognitive subscales of Alzheimer's disease assessment scale (ADAS-cog) at 4 weeks and 12 weeks. Baseline MMSE and ADAS scores showed no difference between the two groups. Results showed that ginseng improved ADAS-cog compared to the control group at 12 weeks (p<0.05). MMSE was also increased by ginseng treatment compared to the control at 12 weeks (p<0.01). This study suggests the symptomatic efficacy of ginseng in patients with Alzheimer's disease.

Epigenetic Age Prediction of Alzheimer's Disease Patients Using the Aging Clock (노화 시계를 이용한 알츠하이머병 환자의 후성유전학적 연령 예측)

  • Jinyoung Kim;Gwang-Won Cho
    • Journal of Integrative Natural Science
    • /
    • v.16 no.2
    • /
    • pp.61-67
    • /
    • 2023
  • Human body ages differently due to environmental, genetic and pathological factors. DNA methylation patterns also differs depending on various factors such as aging and several other diseases. The aging clock model, which uses these differences to predict age, analyzes DNA methylation patterns, recognizes age-specific patterns, predicts age, and grasps the speed and degree of aging. Aging occurs in everyone and causes various problems such as deterioration of physical ability and complications. Alzheimer's disease is a disease associated with aging and the most common brain degenerative disease. This disease causes various cognitive functions disabilities such as dementia and impaired judgment to motor functions, making daily life impossible. It has been reported that the incidence and progression of this disease increase with aging, and that increased phosphorylation of Aβ and tau proteins, which are overexpressed in this disease and accelerates epigenetic aging. It has also been reported that DNA methylation is significantly increased in the hippocampus and entorhinal cortex of Alzheimer's disease patients. Therefore, we calculated the biological age using the Epi clock, a pan-tissue aging clock model, and confirmed that the epigenetic age of patients suffering from Alzheimer's disease is lower than their actual age. Also, it was confirmed to slow down aging.

Regulation of amyloid precursor protein processing by its KFERQ motif

  • Park, Ji-Seon;Kim, Dong-Hou;Yoon, Seung-Yong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.337-343
    • /
    • 2016
  • Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy.

A retrospective analysis of outpatient anesthesia management for dental treatment of patients with severe Alzheimer's disease

  • So, Eunsun;Kim, Hyun Jeong;Karm, Myong-Hwan;Seo, Kwang-Suk;Chang, Juhea;Lee, Joo Hyung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.4
    • /
    • pp.271-280
    • /
    • 2017
  • Background: The number of patients with Alzheimer's disease is growing worldwide, and the proportion of patients requiring dental treatment under general anesthesia increases with increasing severity of the disease. However, outpatient anesthesia management for these patients involves great risks, as most patients with Alzheimer's disease are old and may show reduced cardiopulmonary functions and have cognitive disorders. Methods: This study retrospectively investigated 43 patients with Alzheimer's disease who received outpatient anesthesia for dental treatment between 2012-2017. Pre-anesthesia patient evaluation, dental treatment details, anesthetics dose, blood pressure, duration and procedure of anesthesia, and post-recovery management were analyzed and compared between patients who underwent general anesthesia or intravenous sedation. Results: Mean age of patients was about 70 years; mean duration of Alzheimer's disease since diagnosis was 6.3 years. Severity was assessed using the global deterioration scale; 62.8% of patients were in level ${\geq}6$. Mean duration of anesthesia was 178 minutes for general anesthesia and 85 minutes for intravenous sedation. Mean recovery time was 65 minutes. Eleven patients underwent intravenous sedation using propofol, and 22/32 cases involved total intravenous anesthesia using propofol and remifentanil. Anesthesia was maintained with desflurane for other patients. While maintaining anesthesia, inotropic and atropine were used for eight and four patients, respectively. No patient developed postoperative delirium. All patients were discharged without complications. Conclusion: With appropriate anesthetic management, outpatient anesthesia was successfully performed without complications for dental treatment for patients with severe Alzheimer's disease.

The Effects of Jangwon-Dan,(JWD) on the Alzheimer's Disease Model Induced by CT-105 and ${\beta}A$ (장원단이 CT105와 ${\beta}A$로 유도(誘導)된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Kim, Geon-Jin;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.2
    • /
    • pp.91-122
    • /
    • 2006
  • Objective : This research investigates the effect of the Jangwon-Dan,(JWD) on Alzheimer's disease. Method : The effects of the JWN extract on (1) $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ mRNA of PC-12 cells treated with LPS; (2) amyloid precursor proteins(APP), acetylcholinesterase(AChE), and glial fibrillary acidic protein(GFAP) mRNA, the AChE activity and the APP production of PC-12 cell treated with CT-105; (3) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, $IL-1{\beta}$ mRNA, and $TNF-{\alpha}$ mRNA, (5) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. Result : 1. The JWN extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in THP-1 cells treated with LPS. 2. The JWN extract suppressed the expression of APP, AChE, and GFAP mRNA in PC-12 cells treated with CT-105. 3. The JWN extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 4. For the JWN extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 5. The JWN extract suppressed the over-expression of $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, $IL-1{\beta}$ mRNA, $TNF-{\alpha}$ mRNA, and CD68/GFAP, in the mice with Alzheimer's disease induced by ${\beta}A$. 6. The JWN extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. Conclusion : These results suggest that the JWN extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the JWN extract for Alzheimer's disease is suggested for future research.

  • PDF

The Effects of ChongMyungTang(CMT) and ChongMyungTang added Hibiscus syriacus(MCMT) Extract on the Alzheimer's Disease Model Induced by CT-105 and ${\beta}A$ (총명탕(聰明湯)과 목근피총명탕(木槿皮聰明湯)이 CT105와 ${\beta}A$로 유도된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향)

  • Park, Ji-Un;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.1
    • /
    • pp.37-57
    • /
    • 2006
  • Objective : This research investigates the effect of the CMT and MCMT on Alzheimer‘s disease. Methods : The effects of the CMT and MCMT extract on (1) amyloid precursor proteins(APP), acetylcholinesterase(AChE) mRNA of PC-12 cells treated with CT-105; (2) the AChE activity and the APP production of PC-12 cell treated with CT-105; (3) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, GFAP, CD68 abd CD11b; (5) the infarction area of the hippocampus in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. Results : 1. The CMT and MCMT extract suppressed the expression of APP, AChE, and mRNA in PC-12 cells treated with CT-105. 2. The CMT and MCMT extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 3. For the CMT and MCMT extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 4. The CMT and MCMT extract suppressed the over-expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, GFAP, CD68 abd CD11bCD68/GFAP, in the mice with Alzheimer's disease induced by ${\beta}A$. 5. The CMT and MCMT extract reduced the infarction area of hippocampus with Alzheimer's disease induced by ${\beta}A$ 6. The MCMT showed more excellent effects than CMT in the every experiments except PC-12 cells. Conclusions : These results suggest that the CMT and MCMT extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the CMT and MCMT extract for Alzheimer's disease is suggested for future research.

  • PDF