• Title/Summary/Keyword: alveolar type

Search Result 293, Processing Time 0.032 seconds

The Change of Secretory Activity of the Alveolar Type ll Cell During Acute Alveolar Injury Induced by N-Nitroso-N-Methylurethane

  • Lee, Young-Man;Bang, In-Sook;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In the animal model of acute respiratory distress syndrome (ARDS) induced by N-nitroso-N-methylurethane (NNNMU) the secretory activity of alveolar type H cells during acute alveolar injury was investigated by determining phospholipid and pulmonary surfactant associated proteins in crude surfactant. The mechanism of the secretory change was studied by determination of DNA and RNA levels in the lung tissue. After induction of acute alveolar injury with NNNMU, pulmonary hemorrhage, atelectasis and gross hypertrophy were observed. Seven days after NNNMU treatment the level of total DNA in lung homogenate was increased markedly indicating that a hypertrophy was induced by cellular proliferation. Although the total DNA level increased, the RNA/DNA ratio was gradually decreased after NNNMU treatment. Seven days after NNNMU treatment the RNA/DNA ratio returned to the normal control level. During the acute alveolar injury, phospholipid and surfactant associated proteins were reduced significantly as compared with the control, implying that the secretory activity of alveolar type II cells was altered during acute alveolar injury induced by NNNMU. The protein content in crude surfactant during peak injury(7 days after NNNMU) was decreased significantly but phospholipid/protein ratios were identical in both control and NNNMU treatment groups. SDS-PAGE of proteins in crude pulmonary surfactant showed a decrease in major surfactant associated protein(M.W. 38,000) during acute alveolar injury. The present study may suggest that while alveolar type H cells proliferate markedly, transcription of alveolar type ll cell gene was inhibited by an unknown mechanism such as DNA methylation induced by NNNMU. Such an inhibition of transcriptional activity is thought to be associated with the decreased secretory activity of alveolar type ll cells, which may lead to pulmonary atelectasis and edema during the acute alveolar injury.

  • PDF

Use of mandibular chin bone for alveolar bone grafting in cleft patients

  • Park, Young-Wook;Lee, Jang-Ha
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.45.1-45.7
    • /
    • 2016
  • Background: We evaluated and compared the outcomes of different ossification processes in patients with alveolar cleft in whom correction was performed using endochondral bone graft or intramembranous bone graft. Methods: The patients were divided into two groups: the endochondral bone (iliac bone or rib bone) graft group and the intramembranous bone (mandibular bone) graft group. Medical records and radiologic images of patients who underwent alveolar bone grafting due to alveolar cleft were analyzed retrospectively. Through postoperative and follow-up radiologic images, the height of the interdental bone septum was classified into four types based on the highest point of alveolar ridge. Then, the height of the interdental bone septum and the area of the bone graft were evaluated according to the type of bone graft. In addition, the occurrence of complications and the need for an additional bone graft, the result of postoperative orthodontic treatment, and the eruption of impacted teeth were investigated. Results: Thirty patients were included in this study. There was no significant difference in the change of the interdental bone height and the area of the bone graft according to the type of bone. There was no significant difference in the success rate of the surgery according to the type of bone. One patient underwent an additional bone graft surgery during the follow-up period. Conclusions: The outcomes of alveolar bone grafting were not significantly different according to the type of bone graft. If appropriate to the size of the recipient site, the chin bone is a useful graft material in alveolar cleft, as is the iliac bone.

Compromised extraction sockets: a new classification and prevalence involving both soft and hard tissue loss

  • Kim, Jung-Ju;Amara, Heithem Ben;Chung, Inna;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.2
    • /
    • pp.100-113
    • /
    • 2021
  • Purpose: Previous studies have solely focused on fresh extraction sockets, whereas in clinical settings, alveolar sockets are commonly associated with chronic inflammation. Because the extent of tissue destruction varies depending on the origin and the severity of inflammation, infected alveolar sockets may display various configurations of their remaining soft and hard tissues following tooth extraction. The aim of this study was to classify infected alveolar sockets and to provide the appropriate treatment approaches. Methods: A proposed classification of extraction sockets with chronic inflammation was developed based upon the morphology of the bone defect and soft tissue at the time of tooth extraction. The prevalence of each type of the suggested classification was determined retrospectively in a cohort of patients who underwent, between 2011 and 2015, immediate bone grafting procedures (ridge preservation/augmentation) after tooth extractions at Seoul National University Dental Hospital. Results: The extraction sockets were classified into 5 types: type I, type II, type III, type IV (A & B), and type V. In this system, the severity of bone and soft tissue breakdown increases from type I to type V, while the reconstruction potential and treatment predictability decrease according to the same sequence of socket types. The retrospective screening of the included extraction sites revealed that most of the sockets assigned to ridge preservation displayed features of type IV (86.87%). Conclusions: The present article classified different types of commonly observed infected sockets based on diverse levels of ridge destruction. Type IV sockets, featuring an advanced breakdown of alveolar bone, appear to be more frequent than the other socket types.

Alveolar Ridge Preservation & Augmentation (치조제의 유지와 수복)

  • Chung, Sung-Min
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.32-40
    • /
    • 1998
  • Alveolar ridge augmentation and preservation techniques designed to reconstruct deformed alveolar ridge now occupy a major role in esthetic dentistry. Previously, deformed alveolar ridges were filled with plastic materials(porcelain or resin) of prosthesis to restore ridge contours, which resulted in larger teeth and food impaction under the pontic base. So, prostheses of this type were unacceptable and really detectable when patients smiled. But nowadays, alveolar ridge augmentation procedures enable the dentists to provide patients with fixed prostheses that are esthetic. The development of guided tissue regeneration technique and materials also have made a major impact on extending the scope of therapeutic horizons in dentistry.

  • PDF

Pathological Study on the Pulmonary Toxicity of Particulate Matters (Carbon Black, Colloidal Silica, Yellow Sands) in Mice

  • Shimada, Akinori
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2005.05a
    • /
    • pp.51-82
    • /
    • 2005
  • To compare the pulmonary toxicity between ultrafine colloidal silica particles (UFCSs) and fine colloidal silica particles (FCSs), mice were intratracheally instilled with 3 mg of 14-nm UFCSs and 230-nm FCSs and pathologically examined from 30 mill to 24 hr post-exposure. Histopathologically, lungs exposed to both sizes of particles showed bronchiolar degeneration and necrosis, neutrophilic inflammation in alveoli with alveolar type II cell proliferation and particle-laden alveolar macrophage accumulation. UFCSs, however, induced extensive alveolar hemorrhage compared to FCSs from 30 min onwards. UFCSs also caused more severe bronchiolar epithelial cell necrosis and neutrophil influx in alveoli than FCSs at 12 and 24 hr post-exposure. Laminin positive immunolabellings in basement membranes of bronchioles and alveoli of UFCSs treated animals was weaker than those of FCSs treated animals in all observation times. Electron microscopy demonstrated UFCSs and FCSs on bronchiolar and alveolar wall surface as well as in the cytoplasm of alveolar epithelial cells, alveolar macrophages and neutrophils. Type I alveolar epithelial cell erosion with basement membrane damage in UFCSs treated animals was more severe than those in FCSs treated animals. At 12 and 24 hr post-exposure, bronchiolar epithelia cells in UFCSs treated animals showed more intense vacuolation and necrosis compared to FCSs treated animals. These findings suggest that UFCSs has greater ability to induce lung inflammation and tissue damages than FCSs.

  • PDF

A STUDY ON THE MECHANICAL BEHAVIORS OF ABUTMENT TEETH AND SUPPORTING TISSUE OF THE TELESCOPE DENTURE BY THE FINITE ELEMENT METHOD (유한요소법(有限要素法)에 의(依)한 Telescope Denture의 지대치(支臺齒) 및 지지조직(支持組織)의 역학적(力學的) 반응(反應)에 관(關)한 연구(硏究))

  • Kim, Moon-Ki;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.109-122
    • /
    • 1984
  • The purpose of this study was to analyze the magnitude and mode of the stress distribution induced in the supporting alveolar bone and periodontal ligament and, to determine the displacement of abutment teeth and telescope denture base by applying chewing force to the telescope denture quantitatively and qualitatively. Two finite element models of telescope denture that were restored the missing mandibular second molar with two abutment teeth which were constructed. In two different models, parallel and tapering type telescope crowns were constructed. These finite element models of two cases used for these experiment were a two-dimensional mesiodistal section of the mandibular second bicuspid and first molar. Chewing force of 25Kg that was devided in the ratio of 45/155 (29%) in bicuspid and 55/155 (35.5%) in molars was applied to telescope denture and abutment teeth respectively. The displacement of the telescope denture base and abutment teeth and the stress distribution in the periodontal ligament and alveolar bone were analized to investigate the influence of chewing force acting on the telescope denture and abutment teeth. The results were as follows: 1. Abutment teeth displaced mesially and the magnitude of displacement of abutment teeth in vertical direction were more than that of horizontal direction in two cases. The displacement of abutment teeth on the telescope denture treated with tapering type telescope crown were less than that of the parallel type crown. 2. The displacement of the telescope denture base that were treated with parallel type telescope crown were less than that of treated with tapering type telescope crown. 3. The stress induced in the alveolar bone and periodontal ligament on abutment teeth that treated with parallel type telescope crown were more than that of treated with tapering type telescope crown and more stress induced in the alveolar bone than in the periodontal ligament. 4. In the telescope denture, the magnitude of displacement of abutment teeth and stress induced in the periodontal ligament and alveolar bone were within physiologic limit.

  • PDF

A STUDY ON A CULTURE OF HUMAN ALVEOLAR BONE CELLS (사람 치조골세포의 배양에 관한 연구)

  • Choi, Byung-Ho;Park, Jin-Hyung;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.602-605
    • /
    • 2000
  • Human alveolar bone cells were isolated from alveolar bone fragments obtained from normal individual undergoing third molar extractions. Alveolar bone fragments were cultured as explant. Cells began to migrate in the first $5{\sim}7$ day and were confluent in $5{\sim}7$ week. Matrix mineralization was observed by 4 week. Our studies utilize established protocols for the characterization of these cells as osteoblasts by means of alkaline phosphatase activity determination, identification of osteocalcin antigens, establishing the presence of cells expressing type I collagen and determining the ability of cells to produce calcification. Transmission electron microscopic observations confirmed the presence of a collagen matrix undergoing a mineralization process. This new model, using human alveolar bone cells, may provide a tool to investigate alveolar bone development and physiology and to set up new therapeutic approaches.

  • PDF

Influence of the Alveolar Cleft Type on Preoperative Estimation Using 3D CT Assessment for Alveolar Cleft

  • Choi, Hang Suk;Choi, Hyun Gon;Kim, Soon Heum;Park, Hyung Jun;Shin, Dong Hyeok;Jo, Dong In;Kim, Cheol Keun;Uhm, Ki Il
    • Archives of Plastic Surgery
    • /
    • v.39 no.5
    • /
    • pp.477-482
    • /
    • 2012
  • Background The bone graft for the alveolar cleft has been accepted as one of the essential treatments for cleft lip patients. Precise preoperative measurement of the architecture and size of the bone defect in alveolar cleft has been considered helpful for increasing the success rate of bone grafting because those features may vary with the cleft type. Recently, some studies have reported on the usefulness of three-dimensional (3D) computed tomography (CT) assessment of alveolar bone defect; however, no study on the possible implication of the cleft type on the difference between the presumed and actual value has been conducted yet. We aimed to evaluate the clinical predictability of such measurement using 3D CT assessment according to the cleft type. Methods The study consisted of 47 pediatric patients. The subjects were divided according to the cleft type. CT was performed before the graft operation and assessed using image analysis software. The statistical significance of the difference between the preoperative estimation and intraoperative measurement was analyzed. Results The difference between the preoperative and intraoperative values were $-0.1{\pm}0.3cm^3$ (P=0.084). There was no significant intergroup difference, but the groups with a cleft palate showed a significant difference of $-0.2{\pm}0.3cm^3$ (P<0.05). Conclusions Assessment of the alveolar cleft volume using 3D CT scan data and image analysis software can help in selecting the optimal graft procedure and extracting the correct volume of cancellous bone for grafting. Considering the cleft type, it would be helpful to extract an additional volume of $0.2cm^3$ in the presence of a cleft palate.

Effect of the Inhibition of PLA2 on Oxidative Lung Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man;Cho, Hyun-Gug;Park, Yoon-Yub;Kim, Jong-Ki;Lee, Yoon-Jeong;Park, Won-Hark;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.617-628
    • /
    • 1998
  • In order to understand the pathogenetic mechanism of adult respiratory distress syndrome (ARDS), the role of phospholipase A2 (PLA2) in association with oxidative stress was investigated in rats. $Interleukin-1{\alpha}\;(IL-1,\;50\;{\mu}g/rat)$ was used to induce acute lung injury by neutrophilic respiratory burst. Five hours after IL-1 insufflation into trachea, microvascular integrity was disrupted, and protein leakage into the alveolar lumen was followed. An infiltration of neutrophils was clearly observed after IL-1 treatment. It was the origin of the generation of oxygen radicals causing oxidative stress in the lung. IL-1 increased tumor necrosis factor (TNF) and cytokine-induced neutrophil chemoattractant (CINC) in the bronchoalveolar lavage fluid, but mepacrine, a PLA2 inhibitor, did not change the levels of these cytokines. Although IL-1 increased PLA2 activity time-dependently, mepacrine inhibited the activity almost completely. Activation of PLA2 elevated leukotriene C4 and B4 (LTC4 and LTB4), and 6-keto-prostaglandin $F2{\alpha}\;(6-keto-PGF2{\alpha})$ was consumed completely by respiratory burst induced by IL-1. Mepacrine did not alter these changes in the contents of lipid mediators. To estimate the functional changes of alveolar barrier during the oxidative stress, quantitative changes of pulmonary surfactant, activity of gamma glutamyltransferase (GGT), and ultrastructural changes were examined. IL-1 increased the level of phospholipid in the bronchoalveolar lavage (BAL) fluid, which seemed to be caused by abnormal, pathological release of lamellar bodies into the alveolar lumen. Mepacrine recovered the amount of surfactant up to control level. IL-1 decreased GGT activity, while mepacrine restored it. In ultrastructural study, when treated with IL-1, marked necroses of endothelial cells and type II pneumocytes were observed, while mepacrine inhibited these pathological changes. In histochemical electron microscopy, increased generation of oxidants was identified around neutrophils and in the cytoplasm of type II pneumocytes. Mepacrine reduced the generation of oxidants in the tissue produced by neutrophilic respiratory burst. In immunoelectron microscopic study, PLA2 was identified in the cytoplasm of the type II pneumocytes after IL-1 treatment, but mepacrine diminished PLA2 particles in the cytoplasm of the type II pneumocyte. Based on these experimental results, it is suggested that PLA2 plays a pivotal role in inducing acute lung injury mediated by IL-1 through the oxidative stress by neutrophils. By causing endothelial damage, functional changes of pulmonary surfactant and alveolar type I pneumocyte, oxidative stress disrupts microvascular integrity and alveolar barrier.

  • PDF

Effect of relative humidity in swine house on pathogenesis of swine pleuropneumonia (돈사의 상대습도가 돼지흉막폐렴의 병인에 미치는 영향)

  • Jeong, Hyun-kyu;Han, Jeong-hee;Kim, Jae-hoon
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.131-142
    • /
    • 1996
  • The effect of relative humidity in swine house on swin pleuropneumonia was examined in piglets experimentally infected with Actinobacillus pleuropneumoniae serotype 5. A total of 20 piglet were grown under 30~40%, 41~50%, 51~64% and 65~80% relative humidity chambers after intratracheal inoculation of A pleuropneumoniae. Characteristic fibrinous pleuropneumonia was observed in the pigs grown at the low relative humidity groups. The detailed results were as follows : 1. Growth performance and environment conditions were lower than high relative humidity groups. 2. Characteristic histopathological findings were fibrinous pleuritis and pneumonia accompanied congestion, hemorrhage, thrombosis and edematous change. 3. Antigenic distribution of inoculated bacterium was found mainly in alveolar macrophages or accumulated foci of macrophages adjacent to necrotic area. 4. Characteristic electron microscopic findings were proliferation of type II pneumocyte with increased lamella bodies and activated alveolar macrophages with pseudopods and widening of interstitium.

  • PDF