• Title/Summary/Keyword: aluminum-intensive body

Search Result 9, Processing Time 0.03 seconds

A Study on The Structure and Safety of Aluminum Intensive Vehicle (알루미늄 초경량 차체의 구조강성 및 안전도향상에 관한 연구)

  • Kim, Jin-Kook;Kim, Sang-Bum;Kim, Heon-Young;Heo, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.363-369
    • /
    • 2000
  • Due to environmental problem for reduction in fuel consumption, vehicle emission and etc., many automotive makers are trying to reduce the weight of the vehicle. The most effective way to reduce the weight of vehicle is to use lighter materials, aluminum, plastics. Aluminum Space Frame has many advantages in weight reduction, body stiffness, ease of model change and so on. So, most of automotive manufacturers are attempting to develope Aluminum Space Frame body. For these reasons, we have developed Aluminum Intensive Vehicle based on steel monocoque body with Hyundai Motor Company. We achieved about 30% weight reduction, the stiffness of our model was higher than that of conventional steel monocoque body. In this paper, with optimization using FEM analysis, we could get more weight reduction and body stiffness increase. In the long run, we analyzed by means of simulation using PAM-CRASH to evaluate crush and crash characteristic of Aluminum Intensive Vehicle in comparison to steel monocoque automotive.

  • PDF

Design of the Impact Energy Absorbing Members and Evaluation of the Crashworthiness for Aluminum Intensive Vehicle (알루미늄 초경량 차체의 충격 흡수부재 설계 및 충돌 안전도 평가)

  • Kim, Heon-Young;Kim, Jin-Kook;Heo, Seung-Jin;Kang, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.216-233
    • /
    • 2002
  • Due to the environmental problems of fuel consumption and vehicle emission, etc., automotive makers are trying to reduce the weight of vehicles. The most effective way to reduce a vehicle weight is to use lighter materials, such as aluminum and plastics. Aluminum Intensive Vehicle(AIV) has many advantages in the aspects of weight reduction, body stiffness and model change. So, most of automotive manufacturers are attempting to develop AIV using Aluminum Space Frame(ASF). The weight of AIV can be generally reduced to about 30% than that of conventional steel vehicle without the loss of impact energy absorbing capability. And the body stiffness of AIV is higher than that of conventional steel monocoque body. In this study, Aluminum Intensive Vehicle is developed and analyzed on the basis of steel monocoque body. The energy absorbing characteristics of aluminum extrusion components are investigated from the test and simulation results. The crush and crash characteristics of AIV based on the FMVSS 208 regulations are evaluated in comparison with steel monocoque. Using these results, the design concepts of the effective energy absorbing members and the design guide line to improve crashworthiness for AIV are suggested.

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

Nugget Formation and Dynamic Resistance in Resistance Spot Welding of Aluminum to Steel

  • Chang H. S.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • Auto industry has employed resistance spot welding(RSW) to join steel sheets for structural rigidity of automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome physical incompatibility between aluminum and steel. Use of transition insert allows for two separate weld nuggets to be formed in their respective aluminum/aluminum and steel/steel interfaces. This RSW processes was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget. The growth of two separate nuggets was examined by micro-cross section test.

  • PDF

In Process Monitoring of Dynamic Resistance during Resistance Spot Welding of Aluminum to Steel using Transition Insert (Transition Insert를 이용한 알루미늄과 강판의 저항점용접에서 동저항측정을 통한 모니터링)

  • Jang, Hui Seok
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.239-239
    • /
    • 2000
  • Automobile manufacturers have employed resistance spot welding(RSW) to join steel sheets for structural rigidity o automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome incompatibility between aluminum and steel. Use of transition insert allows for two separate weld muggets to be formed in their respective aluminum/ aluminum and steel/ steel interfaces. This RSW process was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget. (Received February 28, 2000)

In Process Monitoring of Dynamic Resistance during Resistance Spot Welding of Aluminum to Steel using Transition Insert (Transition Insert를 이용한 알루미늄과 강판의 저항점용접에서 동저항측정을 통한 모니터링)

    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 2000
  • Automobile manufacturers have employed resistance spot welding(RSW) to join steel sheets for structural rigidity of automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome incompatibility between aluminum and steel. Use of transition insert allows for two separate weld nuggets to be formal in their respective aluminum/aluminum and steel/steel interfaces. This RSW process was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget.

  • PDF

COLLAPSE CHARACTERISTICS OF ALUMINUM EXTRUSIONS FILLED WITH STRUCTURAL FOAM FOR SPACE FRAME VEHICLES

  • Kim, B.J.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • For improving high-safety, convenience, and ride comfort, the automotive design suffers from radical increase of the weight, the recycling-related rules, regulations on the waste gas, and environmental protection of the resources. Among them, it is well known that the weight increase is the most critical. Thus, in order to minimize the weight of the body-in-white that takes up 20-30% of the whole weight of the automobile, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using aluminum space frames. In this research, the crush test and simulation for aluminum extrusions are performed to evaluate the collapse characteristics of that light weighted material. Also. the same test and simulation was done for aluminum extrusions filled with structural foam. Then, these results are analyzed and compared. From these studies, the effectiveness of structural foam is evaluated in improving automotive crashworthiness. Finally, the design strategy and guideline of the structural form are suggested in order to improve the crashworthiness for aluminum space frame in the vehicle.

Sensitivity Correlations of Electrical Vehicle (전기 차량의 민감도 상관관계)

  • Lee, Jeong-Ick
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.337-347
    • /
    • 2009
  • Generally, finite element models used in structural analysis have some uncertainties of the geometric dimensions, applied loads and boundary conditions, as well as in material properties due to the manufacturability of aluminum intensive body. Therefore, it is very important to refine or update a finite element model by correlating it with dynamic and static tests. The structural optimization problems of automotive body are considered for mechanical structures with initial stiffness due to preloading and in operation condition or manufacturing. As the mean compliance and deflection under preloading are chosen as the objective function and constraints, their sensitivities must be derived. The optimization problem is iteratively solved by a sequential convex approximation method in the commercial software. The design variables are corrected by the strain energy scale factor in the element levels. This paper presents an updated method based on the sensitivities of structural responses and the residual error vectors between experimental and simulation models.

  • PDF

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.