• 제목/요약/키워드: aluminum dust

검색결과 35건 처리시간 0.024초

토공사 현장에서 발생하는 공기 중 석영의 노출 평가 (Exposure Assessment of Airborne Quartz from Earthwork Sites)

  • 성은창;배혜정;정종현;피영규
    • 한국산업보건학회지
    • /
    • 제25권4호
    • /
    • pp.584-590
    • /
    • 2015
  • Objectives: The purpose of this study was to evaluate quartz concentrations in airborne total and respirable dusts. Materials: Respirable dust samples were collected using a 10 mm aluminum cyclone equipped with a 37 mm$5{\mu}m$ pore size PVC filter. Total dust samples were collected with a three stage cassette from three work sections at earthwork sites located in the South Chungcheong-do Province area. Results: The geometric means of quartz concentrations were $0.008mg/m^3$ and $0.004mg/m^3$ in total dust and respirable dust, respectively. The geometric means of quartz contents analyzed by FTIR were 3.74% in total dust and 3.16% in respirable dust. The geometric mean of quartz concentrations and contents in secondary blasting operations were higher than those in other operations. Conclusions: Given that secondary blasting operations had higher quartz concentrations, there is a need to reduce respirable dust, such as through wet operations.

Distribution Characteristics of Dust and Heavy Metals in the Atmosphere Around the Steel Industrial Complex

  • Hye-jin Jo;Jong-Ho Kim;Byung-Hyun Shon
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.334-344
    • /
    • 2024
  • In Dangjin, Chungcheongnam-do, there are not only power plants and large steel complexes, but also small and medium-sized air pollutant emission facilities. The dust generated by these facilities has a very small particle size and a large surface area due to condensation and physical and chemical reactions, and is discharged containing various harmful substances. Therefore, this study analyzed the distribution of particulate matter and heavy metal concentrations by particle size in the vicinity of the steel complex, residential area, and reference point using an eight-stage Cascade Impactor. Overall, the direct impact sites with a short distance from the steel complex had the highest concentration, followed by the indirect impact sites, and the non-impact sites had the lowest concentration, indicating that they are directly affected by the steel complex. The atmospheric dust concentration distribution showed a bimodal distribution with a minimum value around the 1.1 to 2.1 ㎛ particle diameter. However, during the yellow dust event, the maximum concentration was biased toward coarse particles. The proportion of PM2.5 in the dust tended to be higher in winter, while the ratio between PM2.5 and PM10 was relatively higher in spring. Regardless of the location of the impact point, heavy metals in the dust were dominated by iron and aluminum, followed by zinc, lead, and manganese.

ACGIH TLV가 전면 개정된 알루미늄 화합물의 노출기준 관리 (Management of OELs for Aluminum Compounds with Completely Revised ACGIH TLVs)

  • 박승현;김세동
    • 한국산업보건학회지
    • /
    • 제30권3호
    • /
    • pp.249-255
    • /
    • 2020
  • Objective: The purpose of this study was to provide technical information about the management of occupational exposure limits(OELs) for substances with completely revised ACGIH TLVs. Methods: The history of ACGIH TLVs for aluminum compounds, the reason for the complete revision of the related ACGIH TLV in 2008, and OELs for them in respective countries were reviewed. In addition, the results of a 2019 work environment assessment for aluminum compounds in Korea were reviewed. Results: In 1979, the ACGIH set up the TLVs for aluminum compounds considering types of compounds such as metal dust, pyro powders, welding fumes, soluble salts, alkyls, and aluminum oxide. However, in 2008 the ACGIH withdrew the TLVs for all types of aluminum and its compounds and adopted new TLVs for aluminum metal and insoluble compounds. This can cause confusion in many countries in the management of exposure to aluminum compounds because they adopt or refer to the ACGIH TLVs. Conclusion: Although Korea is setting occupational exposure limits by referring to the ACGIH's TLVs, it is necessary to sufficiently review whether it is necessary to accept the TLVs as they are if a TLV is completely changed, like took place with the revision of aluminum compounds in 2008.

코발트 취급사업장의 공기 중 코발트 노출평가 (Exposure Assessment of Airborne Cobalt in Manufacturing Industries)

  • 김재홍;정종현;피영규
    • 한국산업보건학회지
    • /
    • 제25권2호
    • /
    • pp.166-173
    • /
    • 2015
  • Objectives: The purpose of this study was to evaluate cobalt concentrations in airborne inhalable, total and respirable dust from manufacturing industries using cobalt. Methods: To compare cobalt concentrations, three types of dust samplers(a 37mm closed cassette sampler, Institute of Occupational Medicine(IOM) sampler, and Aluminum cyclone sampler) were used. The analysis of cobalt concentrations was conducted using AAs based on the NIOSH 7300 method. Results: The geometric mean of cobalt concentration in total dust was $1.47{\mu}g/m^3$, and the rate of excess of the Korean Occupational Exposure Limit(KOEL) was 10.0%. The geometric mean concentrations of cobalt in super alloy manufacturing industries were higher than those in plating industries, and molding operations showed higher exposure levels to cobalt than did other operations. Conclusions: The rate of cobalt concentration in inhalable dust from super alloy manufacturing industries exceeding the Workplace Exposure Limit(WEL) as recommended by the Health & Safety Executive(HSE) was 7.1%, which means proper work environmental management is required through wet work environments. Given that molding operations had higher cobalt concentrations, it is necessary to apply measures such as local exhaust for reducing airborne dust in cobalt manufacture industries.

알루미늄 분체의 폭발위험성과 화염전파속도 (Explosion Hazards and Flame Velocity in Aluminum Powders)

  • 한우섭;이수희
    • 한국가스학회지
    • /
    • 제16권5호
    • /
    • pp.7-13
    • /
    • 2012
  • 알루미늄 분진폭발특성에 미치는 입경과 농도 변화에 따른 영향을 20 L 구형 분진폭발시험장치를 사용하여 실험적으로 조사하였다. 실험에 사용한 알루미늄 분진의 체적 평균 입경은 15.1 및 $34.8{\mu}m$이다. 실험결과, 평균 입경 $15.1{\mu}m$에서의 폭발하한농도(LEL)는 $40g/m^3$, 최대폭발압력($P_{max}$)은 9.8 bar, 폭발압력상승속도는 ($[dP/dt]_{max}$)는 1852 bar/s이었으며, 평균입경 $34.8{\mu}m$의 경우에는 LEL이 $70g/m^3$, $P_{max}$는 7.9 bar, $[dP/dt]_{max}$는 322 bar/s가 얻어졌다. Al분진의 폭발하한농도는 입경 증가에 따라 증가하는 경향이 관찰되었다. 또한 평균입경 $15.1{\mu}m$에서의 Al분진폭발압력으로부터의 화염전파속도의 계산값은 평균입경 $34.8{\mu}m$의 경우보다 5배의 크기를 나타내었다.

알루미늄 군입자 화염특성 분석을 위한 광학기법 연구 (Optical Diagnostic Study for Flame Characteristic Analysis in Aluminum Dust Clouds)

  • 이상협;고태호;임지환;이도형;윤웅섭
    • 한국추진공학회지
    • /
    • 제17권5호
    • /
    • pp.47-53
    • /
    • 2013
  • 본 연구에서는 고에너지 금속 알루미늄 군입자 연소 화염 분석을 위한 측정기법 개발 연구로서 스펙트로메터를 사용하여 화염 온도와 자발광 스펙트럼을 측정하였다. 마이크로 크기의 알루미늄 군입자 연소 반응시 발생하는 화염온도는 약 2400 K 이상의 초고온이므로 비접촉식 광학 계측 방법을 사용하였으며, 측정을 위해 개발된 기법은 520 nm, 640 nm를 사용하는 이색법을 응용한 방법과 광대역 파장 비교법으로서 각각의 방법은 정밀하게 검증 후 실험에 적용되었다. 연소실 하단에서 화염온도 측정결과 두 방법 모두 2400 K 이상의 화염온도를 확인할 수 있었으며 자발광 측정 결과 알루미늄 연소 반응시 가장 지배적으로 발생하는 화학종인 AlO를 확인할 수 있었다.

Simultaneous Removal of Gas and Dust by Activated Carbon Coated Electrode

  • Kim, Kwang Soo;Park, Jung O;Lee, Ju Haeng;Jun, Tae Hwan;Kim, Ilho
    • Environmental Engineering Research
    • /
    • 제18권4호
    • /
    • pp.229-234
    • /
    • 2013
  • This study aimed to develop a new dust collecting system equipped with an activated carbon (A.C.) coated electrode. Before fabrication, pre-treatment of A.C. was performed to remove metal ions within the A.C. to enlarge its specific surface area. Then, pre-treated A.C., black carbon, polyvinyl acetate (PVAc), and methanol were mixed to make a gel compound, which was coated onto aluminum plates to fabricate electrodes. The optimal mixing ratio of A.C., black carbon, PVAc, and methanol was found to be 10 g: 2 g: 3 g: 20 mL. After fabrication, the electrodes were used in the batch-type experiment for $NH_3$ and $H_2S$ removal. The reduction rates of the gases were high at the beginning and slowly reduced with time. Dust collection experiments were conducted in continuous flow, with various voltages applied. Compared to 5 kV, dust removal efficiency was 1.5 times higher when 10 kV was applied. Increasing the number of electrodes applied also increased the collecting efficiency. The correlation coefficient between actual collecting efficiency and trend line was higher than 99%. Consequently, the novel dust collection system equipped with A.C. coated electrode appears to be a promising substitute for existing dust-control devices.

Use of 1,064-nm Q-switched Neodymium:Yttrium-aluminum-garnet Laser Therapy Assisted with Diamond Particle Suspension and Gold Microparticle Application for Acne Vulgaris and Enlarged Facial Pores

  • Park, Hee Ung;Cho, Hangrae;Lee, Sang Ju;Cho, Han Kyoung
    • Medical Lasers
    • /
    • 제10권4호
    • /
    • pp.242-245
    • /
    • 2021
  • Acne vulgaris is a common inflammatory skin disease of the pilose-baceous unit. It appears as lesions consisting of comedones, papules, pustules, and nodules of varying shapes and severity. In general, the first-line treatment for acne vulgaris includes topical and oral medication. Recently, various physical modalities have also been investigated. The use of laser therapy is steadily increasing because of its fewer side effects, short procedure time, and rapid results. In particular, laser therapy assisted with carbon suspension application is effective for acne vulgaris but may sometimes result in discomfort due to odor and dust formation during the procedure. Herein, we report that acne vulgaris and enlarged facial pores can be safely and effectively treated with laser therapy assisted with diamond particle suspension and gold microparticle application, which can address the discomfort caused by the carbon suspension application.

고 에너지 레이저를 통한 laser-ablated 알루미늄의 detonation 현상 연구 (The study of detonation of laser-ablated aluminum by high power laser)

  • 김창환;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.425-429
    • /
    • 2011
  • 높은 레이저 복사 조도에 발생되는 금속 플라즈마의 발달 과정과 레이저 펄스 이후의 shadowgraph를 이용해 공기 중에서의 데토네이션과 연소 현상에 대해 연구되었다. 본 논문의 가장 중요한 점은 높은 레이저 에너지에 의해 삭마 된 알루미늄 플라즈마와 공기로부터의 산소와의 화학반응의 진행을 XRD를 통해 관측한 것이다. 또한 레이저를 통해 유도된 화학적 반응 파와 공기 중에서의 알루미늄 분진 폭발의 데토네이션과의 양적인 평가를 유도하였다. 이러한 연구는 덩어리 상태의 금속 샘플에서 산화제를 필요로 하지 않고 데토네이션을 발생시키는 새로운 방법을 제시할 것으로 여겨진다.

  • PDF

표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구 (Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample)

  • 김창환;여재익
    • 대한기계학회논문집B
    • /
    • 제36권2호
    • /
    • pp.197-204
    • /
    • 2012
  • 본 논문에서는 공기 중에서 높은 레이저 복사 조도에 따른 효과에 의해 발생되는 금속 플라즈마의 발달 과정에 대하여 레이저 펄스가 끝나는 이후로 쉐도우그래프(Shadowgraph) 가시화 방법을 이용하여 현상을 연구하였다. 따라서 레이저에 의한 데토네이션의 발생과 이를 일으키는 연소 과정 대한 연구가 진행되었다. 본 논문의 가장 중요한 점들은 높은 레이저 에너지에 의해 삭마 된 기체 상태의 알루미늄과 공기로부터의 산소와의 화학 반응의 진행을 관측했을 뿐만 아니라, 화학 반응 최종 산화물을 X선 회절 분석법(X-Ray Diffraction)을 통해 관측한 것이다. 그리고 레이저를 통해 유도된 화학적 반응 파와 공기 중에서의 알루미늄 분진 폭발의 데토네이션과의 양적인 평가를 유도하였다. 이러한 연구는 덩어리 상태의 금속 샘플에서 공기 중의 산소를 이용하여 데토네이션을 발생시키는 새로운 방법을 제시할 것으로 여겨진다.