• Title/Summary/Keyword: aluminum composite

Search Result 710, Processing Time 0.024 seconds

A Study on the fatigue Behavior of Aluminum Repaired by Graphite/Epoxy Composite - Pretreatment Effect of Aluminum (탄소섬유/에폭시 복합재로 보수된 알루미늄의 피로특성에 대한 연구 -알루미늄 표면처리 효과)

  • 김만태;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.149-154
    • /
    • 2004
  • For a present study, we investigated fatigue behavior of cracked aluminum repaired by unidirectional graphite/epoxy composite material. Three different specimens were used in the fatigue tests: cracked aluminum, cracked aluminum repaired by graphite/epoxy composite patch, and plasma-treated aluminum repaired by graphite/epoxy composite patch. The surface of the aluminum was treated using a DC plasma. The results showed that the fatigue crack growth behavior of cracked aluminum was significantly improved by repairing the cracked area with a composite patch. Specifically, the specimen repaired by composite patch showed about 300% more fatigue lift than the cracked aluminum. In particular, the plasma-treated aluminum repaired by composite patch showed almost 12 % more fatigue life than the cracked aluminum repaired by graphite/epoxy composite patch. The increased fatigue life of plasma-treated case was attributed to the surface roughness of aluminum by plasma treatment.

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process (탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성)

  • Kang, Ki-Cheol;Xiong, Yuming;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.

Development of Loess Composite for the Control of Phosphorus Release from Lake Sediments (호소 퇴적층으로부터 용출되는 인 제거를 위한 황토 복합체 개발)

  • Shin, Gwan-Woo;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • In this study, loess composites, loess with lanthanum and with aluminum, were made and evaluated for treatment of phosphorus removal in natural water system. Desiccation method for production of loess composite was superior to centrifugation method in obtaining high concentrated composites of lanthanum and aluminum. Washing of loess lanthanum composite by water did not deteriorat the lanthanum concentration in the composite, but this lowered the aluminum concentration of loess aluminum composite. Total of 15 and 37.5% of aluminum contents were removed after first washing treatment in aluminum loess of 0.05% and 0.1% respectively. However, no more aluminum loss was monitored with increase of washing times. Phosphorus removal efficiencies were not decreased with washed loess aluminum composite. Phosphorus removal was successfully achieved by adsorption of phosphate to loess composite at pH range of 5.0 ~ 8.0. Freundlich and Langmuir adsorption isotherm was observed in the adsorption of phosphate for loess composite. Dosages of 0.05% and 0.1% lanthanum composite for 95% of phosphorus removal could reduce its usage amount to 25% and 50%, respectively, comparing with dosage of loess alone. Dosages of 0.05% and 0.1% aluminum composite could reduce its usage amount to 48% and 63%, respectively.

Axial crush and energy absorption characteristics of Aluminum/GERP hybrid square tube (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.168-171
    • /
    • 1999
  • For the axial crushing tests of various shape of tubes, it was reported that composite tubes need trigger mechanism to avoid brittle failure. In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tubes. Glass/Epoxy prepregs were wrapped around aluminum tube and co-cured. The failure of hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to maximum 34% in comparison with aluminum tube. Effective energy absorption is possible for inner aluminum tube because wrapped composite tube constrain the deflection of aluminum tube and reduce the folding length. The failure of hybrid composite tube was stable without trigger mechanism because inner aluminum tube could play the role of crack initiator and controller. Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure due to effective energy absorption capability, easy production, and simple application for RTM process.

  • PDF

An Experimental Study for Vertical Flame Spread Analysis of Aluminum Composite Panel (알루미늄 복합 패널의 수직 화염전파속도 분석을 위한 실험적 연구)

  • Kim, Il-Kwon;Kim, Bong-Chan;Ku, In-hyuck;Seo, Dong-Gu;Lim, Nam Gi;Kwun, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.315-317
    • /
    • 2013
  • To analyze vertical fire spreadability of aluminum composite panel, real scale test of aluminum composite panel and fire retardant aluminum composite panel was conducted as well as analysis of domestic code, test and domestic reaserch resulted in following conclusion. Fire spread risk assessment of aluminum Composite Panel is impossible with the current regulations (Cone Calorimeter Test). It need to changes of regulatory and combustion expanded risk assessment and regulatory changes in the test methods need to be judged. Also, there is quite a big different between the general aluminum Composite Panel and semi-non combustible of aluminum Composite Panel. However it is also deemed to be danger when present in the sidewall to the top consisting of fire spread. From now on, it is needed the study about interpretation of fire spread and sidewall of vertical fire spread analysis not only experiments for aluminum Composite Panel.

  • PDF

Fatigue Characteristics of Aluminum Material Repaired by CFRP Composite (CFRP 복합재로 보수된 알루미늄 재료의 피로특성에 대한 연구)

  • Kim, Man-Tae;Rhee, Kyong-Yop
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.320-323
    • /
    • 2004
  • This work investigated fatigue characteristics of aluminum repaired by CFRP composites. Three specimens, cracked aluminum, cracked aluminum patched by CFRP, and plasma-treated aluminum patched by CFRP were used for the fatigue tests. The results showed that the fatigue crack growth behavior of cracked aluminum was improved by repairing the cracked area with composite patch. Specifically, the specimen repaired by composite patch showed about three times more fatigue life than the cracked aluminum. The plasma-treated aluminum repaired by composite patch showed about five times more fatigue life than the cracked aluminum.

  • PDF

High Temperature Friction Characteristic of $Al-SiC_{p}$ Composite Coating Prepared by Plasma Thermal Spray (플라즈마 용사에 의해 제조한 $Al-SiC_{p}$ 복합재료 코팅층의 고온마찰특성)

  • 민준원;유승을;서동수
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.274-279
    • /
    • 2003
  • $Al-SiC_{p}$ composite layer was prepared by plasma thermal spray on aluminum substrate. The homogeneously dispersed composite powder for thermal spray was fabricated by mechanical alloying with ball mill. The friction tests of the composite layers and commercial aluminum alloys for comparison were performed in the temperature range of 20∼$260^{\circ}C$ with the interval of $40^{\circ}C$ with steel counter-face. Friction coefficient was recorded during test sequence, and the microstructure of surface and debris was investigated by optical and scanning electron microscope. Friction coefficients of composite and aluminum alloys at room temperature were similar except pure aluminum. As the temperature increase, friction coefficient was increased rapidly in AC4C, AC2A. But friction coefficient of $Al-SiC_{p}$ composite was not increased so much up to $220^{\circ}C$. Consequently, the reinforcement of $SiC_{p}$ into aluminum matrix increased the stability of friction coefficient as well as wear resistance.

Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings (고속 화염 용사를 통하여 형성된 다중벽 탄소 나노튜브 알루미늄 복합소재 코팅의 특성 평가)

  • Kang, Ki-Cheol;Park, Hyung-Kwon;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Multi-walled carbon nanotube (MWCNT) aluminum composite powders were deposited to form coatings using a high velocity oxygen fuel (HVOF) spraying process. High thermal energy and contact with atmospheric oxygen were supplied as the MWCNT aluminum composite particles were exposed to a gas flow field at high temperature (${\sim}3.0{\times}10^3$ K) during HVOF spraying. As a result, the particles underwent full or partial melting and rapid solidification due to the high thermal energy, and the exposure to oxygen induced the interfacial reaction of MWCNTs within the particle. The electrical and mechanical properties of MWCNT aluminum composite coatings were evaluated based on microstructure analysis. Electrical resistivity, elastic modulus, and micro-hardness, of the MWCNT aluminum composite coatings were higher than those of pure aluminum coating. The contribution of MWCNTs to the aluminum matrix can be attributed to their high electrical conductivity, dispersion hardening and anchoring effects. The relationship among the properties and the interaction of the MWCNTs with the aluminum matrix is discussed.

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF