• Title/Summary/Keyword: alum dosage

Search Result 43, Processing Time 0.024 seconds

Influence of the Adjuvants and Genetic Background on the Asthma Model Using Recombinant Der f 2 in Mice

  • Chang, Yoon-Seok;Kim, Yoon-Keun;Jeon, Seong Gyu;Kim, Sae-Hoon;Kim, Sun-Sin;Park, Heung-Woo;Min, Kyung-Up;Kim, You-Young;Cho, Sang-Heon
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.295-300
    • /
    • 2013
  • Der f 2 is the group 2 major allergen of a house dust mite (Dermatophagoides farinae) and its function has been recently suggested. To determine the optimal condition of sensitization to recombinant Der f 2 (rDer f 2) in murine model of asthma, we compared the effectiveness with different adjuvants in BALB/c and C57BL/6 mice. Mice from both strains sensitized with rDer f 2 by intraperitoneal injection or subcutaneous injection on days 1 and 14. The dosage was $20{\mu}g$. Freund's adjuvants with pertussis toxin (FP) or alum alone were used as adjuvants. On days 28, 29, and 30, mice were challenged intranasally with 0.1% rDer f 2. We evaluated airway hyperresponsivenss, eosinophil proportion in lung lavage, airway inflammation, and serum allergen specific antibody responses. Naive mice were used as controls. Airway hyperresponsiveness was increased in C57BL/6 with FP, and BALB/c with alum (PC200: $13.5{\pm}6.3$, $13.2{\pm}6.7$ vs. >50 mg/ml, p<0.05). The eosinophil proportion was increased in all groups; C57BL/6 with FP, BALB/c with FP, C57BL/6 with alum, BALB/c with alum ($24.8{\pm}3.6$, $20.3{\pm}10.3$, $11.0{\pm}6.9$, $5.7{\pm}2.8$, vs. $0.0{\pm}0.0$%, p<0.05). The serum allergen specific IgE levels were increased in C57BL/6 with FP or alum (OD: $0.8{\pm}1.4$, $1.1{\pm}0.8$, vs. $0.0{\pm}0.0$). C57BL/6 mice were better responders to rDer f 2 and as for adjuvants, Freund's adjuvant with pertussis toxin was better.

Application of Pore-controllable Fiber Filter(PCF) as a Pretreatment for Water Treatment Process (정수처리공정 전처리로서의 공극제어 섬유여과기(PCF)의 적용)

  • Lee, Chul-Woo;Lee, Byung-Goo;Lee, Il-Kuk;Lee, Shun-Hwa;Bae, Sang-Dae;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.235-244
    • /
    • 2006
  • A PCF(Pore Controllable Fiber Filter) process was applied as a pretreatment of water treatment for reduction of turbidity. The experimental results obtained from the PCF showed that the removal efficiency of turbidity without coagulation was around over 70 percent. However, the removal efficiency of turbidity by the coagulation-PCF process was high as much as over 95%. Thus, the coagulation pretreatment was required for the better operation of the PCF. The SEM (Scanning Electron Microscope) images of fiber before and after filtration showed that the filtration mechanism of PCF filter is both controlling attachment mechanism and Sieving mechanism through fiber pore. For the coagulation-PCF process, optimum dosage of coagulant was needed for the economical operation, and for this, determining the optimum dosage by using a filter column test. Also only 16mg/L of alum was used to obtain high algae removal efficiency over 90%. Therefore, it can be concluded that coagulation-PCF process is very effective pretreatment process for algae removal.

Co-precipitation of Turbidity and Dissolved Organic Matters by Coagulation (응집(凝集)에 의한 탁도물질(濁度物質) 및 용존(溶存) 유기물질(有機物質)의 동시제거(同時除去)에 대한 연구(硏究))

  • Jeong, Sang-Gi;Jun, Hang-Bae;Kim, Hag-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • Various humic substances are widely distributed in natural water body, such as rivers and lakes and cause the yellowish or brownish color to water. The evidence that humic substances are precursors of THMs formation in chlorinated drinking water has been reported m the Jiteratures. For the reason of public health as well as aesthetics, needs for humic substances removal have been increased in the conventional water treatment processes. In this research, the characteristics of aluminium coagulation of humic acids and humic acids were investigated. The optimum pH and coagulants dosage to remove these materials simultaneously by coagulation were alto studied. The results are as followed; 1. UV-254 absorptiometry for measuring the concentration of aquatic humic acids showed good applicability and stable results. 2. The optimal pH range for humic acids removal by aluminium coagulation was 5 to 5.5, however, an increase in aluminium coagulant dosage could enhance the removal rate of humic acids in the wide pH range. 3. Coprecipitation of humic acids in the typical pH range of 6.5 to 8 in water treatment processes may require the sweep coagulation mechanism with the excess aluminium coagulant dosage. 4. Using PAC(poly aluminium chloride) or PASS(poly aluminium silica sulfate) as coagulants was able to expand the operating range for removing humic acids. 5. From the coagulation of humic substances(UV-254) and turbidity at pH range of 5.5 - 6.0 and alum dose of 86 ppm, the removal efficiency of turbidity from the reservoir water was above 90% and that of UV-254 was above 70%. 6. By using the reservoir water, the optimum condition of rapid mixing for simultaneous removal of turbidity and UV-254 absorbance was pH of 5.8 and LAS dose of 86 ppm, in this study.

  • PDF

Removal efficiency of various coagulants for Microcystis, Anabaena and Oscillatoria at different cell densities

  • Han, Joo Eun;Park, Soo Hyung;Yaqub, Muhammad;Yun, Sang Leen;Kim, Seog-ku;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • The continuous industrial growth increases the volume of pollutants discharged into the water, which induces Cyanobacteria in the receiving bodies. The removal of various cyanobacteria such as Microcystis, Anabaena, and Oscillatoria was explored to analyze their removal characteristics using different chemical and mineral coagulants. The chemical coagulants, including poly aluminium chloride (PACl), Alum, and mineral coagulants such as Loess and Illite, were tested to remove selected cyanobacteria. Results indicated that the removal rate increased with coagulant dosage regardless of the type of coagulant. The removal of selected cyanobacteria using chemical coagulant was found in the order: Microcystis > Anabaena > Oscillatoria. The PACl coagulant showed the most efficient removal rate for Microcystis, Anabaena, Oscillatoria. Removal rate of Microcystis conducted by PACl showed 92% at 100,000 cells/mL and 98.4% at 1,000,000 cells/mL whereas Illite showed lower 70% and Loess showed lower 50% in both 100,000 cells/mL and 1,000,000 cells/mL. The removal rate of Anabaena and Oscillatoria by PACl and Alum was higher 80%, while the other coagulants exhibited lower than 75% at 1,000,000 cells/mL. The removal rate of Oscillatoria by PACl was 80.1%, while the other coagulants exhibited lower than 70% at 1,000,000 cells/mL. Moreover, the mineral coagulants showed better removal efficiency at a higher concentration than low concentration during experiments. Therefore, removing cyanobacteria from water streams can be improved through coagulation by selecting a specific coagulant for a particular type of algae.

POTABLE WATER TREATMENT BY POLYACRYLAMIDE BASE FLOCCULANTS, COUPLED WITH AN INORGANIC COAGULANT

  • Bae, Young-Han;Kim, Hyung-Jun;Lee, Eun-Joo;Sung, Nak-Chang;Lee, Sung-Sik;Kim, Young-Han
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • For this study, we polymerized polyacrylamide base flocculants (PAA) and tested their properties and settling efficiency as a treatment for potable water. The most common chemicals for potable water treatment in Korea are alum or PAC. However, due to various reasons (such as rainy season or algae), inorganic flocculants cannot be solely depended on to solve all the problems caused by the poor quality of inflow water. When PAA coupled with coagulants in a potable water purification process is used, the turbidity removal efficiency increases by a factor of three on a single chemical system using PAC (Raw water: 5.21 NTU; Treated PAA+PAC: 0.34 NTU; and, Treated PAC: 1.04 NTU). It is possible to offset the toxic effect of residual monomers in treated water using PAA, because the concentrations of residual acrylamide are less than 400 mg/L in the polymer itself and less than $0.04\;{\mu}g/L$ in the treated water base at a dosage of 0.1 mg/L. Therefore, PAAs may be a workable, and dependable, potable water treatment process for the high pollutant level of resource water.

Addition of Coagulants for Phosphorus Removal from Combined Sewer Overflows (CSOs) (합류식 하수관거 월류수의 인제거를 위한 응집제 투여)

  • Son, Sang-Mi;Jutidamrongphan, Warangkana;Park, Ki-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.295-302
    • /
    • 2012
  • The coagulation of combined sewer overflows ($CSO_{s}$) was investigated by jar-testing with several commercial coagulants. $CSO_{s}$ sample showed different characteristics of coagulation from secondary wastewater with three common coagulants, aluminum sulfate, ferric chloride and polyaluminum chloride (PACl). Jar-tests showed that relatively wide range of optimal SS and T-P removal yielded with alum and ferric chloride compared with cationic polymers, though efficient SS and T-P removal can be achieved with all three coagulants. The decrease of pH was caused by the increase in dosage of aluminum sulfate, ferric chloride and PACl as coagulants. The pH was changed from 7.0 to 4.7 with the dosages of ferric chloride 25 mL/L. Aluminum sulfate revealed pH of 5.0 and PACl was highest pH of 5.4 after dosing of coagulants. The optimal pH to treat $CSO_{s}$ with aluminum sulfate were 6-6.5; with PACl 6-7, and with ferric chloride higher than 7.

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

Application of Coagulation-UF Hybrid Membrane Process for Reuse of Secondary Effluent (하수 2차 처리수 재이용을 위한 hybrid 응집-UF 막분리 공정의 적용)

  • Lee, Chul-Woo;Shon, Jung-Ki;Shon, In-Shik;Han, Seung-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.605-612
    • /
    • 2005
  • The objective of this study was to evaluate the factors affecting the optimization of coagulation hybrid UF membrane processes for the reuse of secondary effluent from sewage treatment plant. The experimental results obtained from the UF membrane process showed that organic colloids in the size range of $0.2{\mu}m{\sim}1.0{\mu}m$ caused the most substantial influence on the fouling of UF membrane. When using a coagulation pretreatment to UF membrane, alum dosage of 50mg/L resulted in the least reduction in membrane permeate flux. Also, for the rapid mixing process, in-line mixer type was more efficient for organic removal than back mixer type. Therefore, it may be concluded that coagulation-UF hybrid membrane process comparing to UF alone process showed not only higher removal efficiency of organic matter, but also substantial improvement of permeate flux of UF membrane.

Application of Ti-salt Coagulant and Sludge Recycling for Phosphorus Removal in Biologically Treated Sewage Effluent (하수종말처리장의 인 처리시설에 티탄염 응집제 적용 및 슬러지 재활용)

  • Kim, Jong Beom;Park, Hee-Ju;Lee, Ki Won;Jo, A Ra;Kim, Myung Wan;Lee, Young Jun;Park, Se Min;Lee, Kwang Young;Shon, Ho Kyong;Kim, Jong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.257-262
    • /
    • 2013
  • As the regulation of total phosphorus (T-P) concentration in biologically treated sewage effluent is reduced to 0.2~2 mg/L, flocculation process is recommended to remove T-P. In this study, the performance of Ti-salt coagulant was investigated in terms of dosage and pH in removing phosphorus and the collected sludge after Ti-salt flocculation was calcined to produce titania for effective sludge recycling. The flocculation performance was carried out using two methods: sedimentation and air floatation. Both methods were feasible to apply for Ti-salt flocculation. Ti-salt flocculation was effective in reducing phosphorus concentration in sewage effluent, which showed similar performance of alum ($Al_2(SO_4)_3$). The calcined sludge was recycled to titania which is the widely used metal oxide. Titania produed from Ti-salt sludge indicated similar characteristics of commercially-available P-25 in regard to photocatalytic activity and surface area. Therefore, this can be easily adopted to titania application by replacing P-25.

Effect of Coagulation in Coagulation/Ultrafiltration Hybrid System in Water Treatment Process (정수처리용 응집.한외여과 혼성공정에서 응집 효과에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyub;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.837-843
    • /
    • 2005
  • Coagulation influence was evaluated as the pretreatment for ultrafiltration. Coagulation was expected to improve water quality, reduce membrane fouling and increase backwash effect. Continuous operation of UF was employed in order to investigate the influence of coagulation. Alum, PACS and Ferric chloride were used as coagulants separately. From the result of the research, coagulation can improve the treated water quality greatly. Organic removal was increased more than turbidity and showed an improvement of 30.6% at most. All three coagulants presented conspicuous reduction of membrane fouling, among which PACS was the most effective with long term run. Backwash effect differed with different coagulants while Ferric chloride turned out to be the most effective one. The optimum dosage of coagulant resulted in the highest backwash efficiency.