• Title/Summary/Keyword: altimeter data

Search Result 102, Processing Time 0.024 seconds

Examination of Altimeter Wave Data in the Sea Around Ieodo Ocean Research Station (이어도 해양과학기지 인근해역에서의 고도계 파고 자료 검증)

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • Big swell is often generated offshore and damages the coasts after travelling long distance. In order to prevent coastal damages, wave measurements should be performed offshore as well as coastal waters around Korea. However, in-situ wave measurements are difficult because of high expense of instruments and high risk of operation. Satellite wave measurements using altimeter make it possible to get wave information from the sea difficult to execute field measurements such as the center of the East Sea or exclusive territorial waters. In order to use wave information from the satellite altimeter, it is important to verify altimeter wave data with in-situ data. This paper examines significant wave height data observed by ENVISAT altimeter by comparing wave data observed at Ieodo station.

The Performance Analysis of an Airborne Radar Altimeter based on Simultaneously Acquired LiDAR Data (비행 시험을 통한 레이더 전파고도계 특성 분석)

  • Yoon, Jongsuk;Kwak, Hee Jun;Kim, Yoon Hyoung;Shin, Young Jong;Yoo, Ki Jeong;Yu, Myeong Jong
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.81-94
    • /
    • 2013
  • The Radar altimeter transmits radio signals to the surface, receives the backscattered signals and measures the distance between the airplane and the nadir surface. The measurements of radar altimeter are affected by various factors on the surface below the aircraft. This study performed flight campaigns in June 2012 and acquired raw data from radar altimeter, LiDAR and other sensors. Based on the LiDAR DSM (Digital Surface Model) as a reference data, the characteristics of radar altimeter were analyzed in the respect of range and surface area affecting on the receiving power of the radar altimeter. Consequently, the radar altimeter was strongly affected by the surface area within beam width and reflectivity related to RCS (Radar Cross Section) rather than range.

Variation of the Sea Level in the Korean seas Using Altimeter Data (TOPEX/POSEIDON)

  • Seo, Won-Chan;Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.430-433
    • /
    • 2008
  • A merged altimeter data products are used to estimate sea level variation in the East Sea between 1993 and 2006. The altimeter data show a high correlation coefficient (0.85) after applying gaussian low pass filter for 180days at Ulleung island. The both of Mukho coast and Ulleung island are minimal sea level in March to May and maximal in September to November. Sea level of Mukho coast is higher than that of Ulleung island during March to May, while Mukho coast is lower during September to November because the North Korea Cold Current flows along the coast line of Mukho. Generally sea level variation at Mukho coast and Ulleung island associated with seasonal variations.

The Altimeter Geoid of the Region of Korean peninsula

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 1995
  • This paper is to provide a reference surface geoid for geodetic applications of satellite altimeter data. The paticular satellite alone or the combination with other altimeter data could be used for the recovery of geoid un-dulations and gravity anomalies in the ocean areas. This paper also describes the geoidal undulation in the ocean area of Korean Peninusla using Geosat, ERS-1 and Topex/Poseidon data. The results show that the quasi-stationary sea surface topography (557) is estimated to be less than 10 cm RMS value in the ocean area of Korean Peninsula. This can be considered as an altimeter geoid.

  • PDF

Topographic Monitoring over Land Surface using Radar Altimeter

  • Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.174-179
    • /
    • 1998
  • In this paper, the radar altimeter for topographic mapping over land is introduced and the characteristics of the return signals are analyzed. The radar system is described briefly and the requirements to get the fine resolution of the terrain surface height are considered. The designed radar altimeter was tested on the landscape in the near of Stuttgart. The measured data shows very fine profile of the test landscape and the height errors induced from different geometrical structure of the land surface are acquired in the measurement. In the test area, most characteristics of radar return signals over land could be tested and the results of the topographic mapping using our radar altimeter can be used for future radar altimeter development for land applications.

  • PDF

Antarctic Sea Ice Distribution from Integrated Microwave Sensings

  • Hwang, Jong-Sun;Yoon, Ho-Il;Min, Kyung-Duck;Kim, Jeong-Woo;Hong, Sung-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.633-633
    • /
    • 2002
  • We investigated the distributions of sea ice using various microwave remote sensing techniques in the part of Drake passage, Antarctica, between the area 45-75$^{\circ}$W and 55-66$^{\circ}$S. We used Topex/Poseidon(T/P) radar altimeter, ERS-1 altimeter, ERS-2 scatterometer, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), and DMSP Special Sensor Microwave/Imager(SSM/I) data. The sea ice distributions were estimated between May and Jun., 1995 and Oct. and Nov., 1998. The two altimeter measurements (T/P and ERS-1) showed good coherence with the results from the radiometer data in the given period when the ice concentration of 20% and greater was selected. The scatterometer data also showed good correlation with altimetry-implied sea ice surface. The maximum and minimum values of sea ice distribution were appeared in Aug. and Feb., respectively. In general, the sea ice distributions estimated from radar altimeter, radioneter, and scatterometer are well correlated.

  • PDF

Distribution of Antarctic Sea Ice from Satellite Altimetry in the Weddell Sea: Preliminary Results

  • Kim, Jeong-Woo;Hong, Sung-Min;Hwang, Jong-Sun;Yoon, Ho-Il;Lee, Bang-Yong;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.255-261
    • /
    • 2002
  • We investigated the distribution of sea ice using Topex/Poseidon (T/P) and ERS-1 .ada. altimeter data in the northwest Weddell Sea, Antarctica, between the area $45-75^{\circ}W\;and\;55-66^{\circ}S$. Using the Geo_Bad_1 flag of the Merged GDR of the T/P, we classified the surface into ocean, land, and sea. Total 257 cycles of altimeter measurements between Oct. 1992 and Sep. 1999 (for nearly 2570 days) were used to analyze the distribution of the Antarctic sea ice. We then calculated the surface area of ice coverage using SUTM20 map projection to monitor the periodic variations. Each year, the maximum and minimum coverage of the sea ice were found in late August and February in the study area, respectively. We also studied the sea ice distribution using ERS-1 altimeter data between $45-75^{\circ}W\;and\;55-81.5^{\circ}S$ to compare with the T/P Using the Valid/Invalid flag of the Ocean Product, we analyzed the sea ice distribution between March and August of 1995, which showed very good coherence with the T/P measurements. Our preliminary results showed that the altimeter measurements can be effectively used to monitor the distribution of the sea ice in the polar region. However, the size of radar footprint, typically 2-6km depending on the roughness of the sea surface, may be too big to monitor the sharp boundary between ice and water/land. If more other altimeter mission data with dense coverage such as Geosat GM are analyzed together, this limitation can be significantly improved. If we also combine other microwave remote sensing data such as radiometer, and SSM/I, the result will be significantly enhanced.

Jamming Detection and Suppression Algorithm for an FMCW Radar Altimeter (FMCW 전파고도계의 재밍 탐지 및 회피 알고리즘)

  • Lee, Jae-Hwan;Jang, Jong-Hun;Roh, Jin-Eep;Yoo, Kyung-Ju;Choi, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2016
  • This paper presents a jamming detection and suppression algorithm of a frequency-modulated continuous-wave(FMCW) radar altimeter. The radar altimeter measures the noise level at the noise measuring period before the transmitting and receiving period and finds the number of sampled noise data over the jamming threshold for detecting the jamming. For a jamming suppression technique, we design the time domain jamming suppression, transmit/receive power control and frequency hopping methods. To assess more realistic operation, the radar altimeter was performed a field test. Through the field test, we verified the algorithms successfully.

Determination of the Gravity Anomaly in the Ocean Area of Korean Peninsula using Satellite Altimeter Data (위성 고도자료를 이용한 한반도 해상지역에서의 중력이상의 결정)

  • 김광배;최재화;윤홍식;이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 1995
  • Gravity anomalies were recovered on a $5'\times{5'}$grid using the sea surface height data obtained from the combination of Geosat, ERS-1, Topex/Poseidon altimeter data around Korean Peninsula bounded by latitude between $30^\circ{N}\;and\;50^\circ{N}$ and longitude $120^\circ{E}\;to\;140^\circ{E.}$ In order to recover the gravity anomalies from SSH(Sea Surface Height), inverse FFT technique was applied. The estimated gravity anomalies were compared with gravity anomalies measured by shipboard around Korean Peninsula. In comparison with the differences of gravity anomaly between measured data and altimeter data, the mean and the standard deviation were found to be -0.51 mGal and 13.48 mGal, respectively. In case of comparison between the measured data and the OSU91A geopotential model, the mean and the standard deviation were found to be 11.93 mGal and 19.19 mGal, respectively. The comparison of gravity anomalies obtained from the OSU91A geopotential model and the altimeter data was carried out. The results were mean of 5.30 meal and standard deviation of 19.62 mGal. From the results, we could be concluded that the gravity anomalies computed from the altimeter data is used to the geoid computation instead of the measured data.

  • PDF

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data (인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.524-535
    • /
    • 2021
  • Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.