• Title/Summary/Keyword: alternative pathways

Search Result 136, Processing Time 0.025 seconds

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Managing Soil Contamination in the United States: Policy and Practice

  • Small, Matthew C.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.58-69
    • /
    • 2003
  • Soil contamination in the United States is managed using a risk-based decision making process. In other words, we don't ask, 'how much soil contamination can be cleaned up\ulcorner' Instead we ask, 'how much contamination can be safely left in place\ulcorner' The determination of 'safe' levels of contamination is based upon the potential for exposure and the toxicity of the contaminants of concern in soil. Potential for exposure is determined by evaluating potential exposure pathways from source to receptor given current or reasonably anticipated land use. Soil cleanup goals are then calculated for any complete exposure pathways based upon toxicity and the route of exposure. In some cases, institutional or engineering controls are also used to limit the potential for exposure. In order to prevent a continuous degradation of environmental quality, risk-based cleanup approaches must be combined with strong contamination prevention programs. In addition, alternative risk management approaches should be incorporated into an overall risk reduction strategy.erall risk reduction strategy.

  • PDF

Pathogenic Molecular Mechanisms of Glutamatergic Synaptic Proteins in Alzheimer's Disease (알츠하이머 병과 글루타메이트성 시냅스 단백질의 분자적 질환 기전)

  • Yang, Jin-Hee;Oh, Dae-Young
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.4
    • /
    • pp.194-202
    • /
    • 2010
  • Alzheimer's disease(AD) is the most common neurodegenerative disorder and constitutes about two thirds of dementia. Despite a lot of effort to find drugs for AD worldwide, an efficient medicine that can cure AD has not come yet, which is due to the complicated pathogenic pathways and progressively degenerative properties of AD. In its early clinical phase, it is important to find the subtle alterations in synapses responsible for memory because symptoms of AD patients characteristically start with pure impairment of memory. Attempts to find the target synaptic proteins and their pathogenic pathways will be the most powerful alternative strategy for developing AD medicine. Here we review recent progress in deciphering the role of target synaptic proteins related to AD in hippocampal glutamatergic synapses.

A Study on Impact and Countermeasures of Marine Fuels in the FuelEU Maritime Regulation (FuelEU Maritime 규제 적용에 따른 해양 연료의 영향분석 및 대응방안 연구)

  • Jin-Hyung Kim;Jae-Hyuk Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.88-97
    • /
    • 2024
  • This study performed the analysis on an economic feasibility of each marine fuel, potential fuel pathways and the relevance of compliance measures to ensure compliance with the FuelEU Maritime regulation. Additionally, it identified certain regulatory gaps to encourage the use of alternative marine fuels. Regarding GHG emissions calculations, the existing GHG regulations for ships applies the Tank-to-Wake (TtW) method, whereas FuelEU Maritime applies the Well-to-Wake (WtW) method. The main results present that important information to establish response strategy for FuelEU Maritime including the costs and benefits of each marine fuel, the minimum blending ratio of alternative fules, and compliance impacts of measures. For the regulatory costs and benefits of marine fuels following the implementation of the FuelEU Maritime from 2025, our findings indicate that while most fossil fuels incur regulatory costs from 2025, most of biofuels and RFNBO fuels do not incur costs until 2050. This will play a role to narrow the price gap between fossil fuels and alternative fuels.

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

Mitochondrial dysfunction and Alzheimer's disease: prospects for therapeutic intervention

  • Lim, Ji Woong;Lee, Jiyoun;Pae, Ae Nim
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • Alzheimer's disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research.

Comprehensive Transcriptomic Analysis of Cordyceps militaris Cultivated on Germinated Soybeans

  • Yoo, Chang-Hyuk;Sadat, Md. Abu;Kim, Wonjae;Park, Tae-Sik;Park, Dong Ki;Choi, Jaehyuk
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • The ascomycete fungus Cordyceps militaris infects lepidopteran larvae and pupae and forms characteristic fruiting bodies. Owing to its immune-enhancing effects, the fungus has been used as a medicine. For industrial application, this fungus can be grown on geminated soybeans as an alternative protein source. In our study, we performed a comprehensive transcriptomic analysis to identify core gene sets during C. militaris cultivation on germinated soybeans. RNA-Seq technology was applied to the fungal cultures at seven-time points (2, 4, and 7-day and 2, 3, 5, 7-week old cultures) to investigate the global transcriptomic change. We conducted a time-series analysis using a two-step regression strategy and chose 1460 significant genes and assigned them into five clusters. Characterization of each cluster based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that transcription profiles changed after two weeks of incubation. Gene mapping of cordycepin biosynthesis and isoflavone modification pathways also confirmed that gene expression in the early stage of GSC cultivation is important for these metabolic pathways. Our transcriptomic analysis and selected genes provided a comprehensive molecular basis for the cultivation of C. militaris on germinated soybeans.

Identification and structure of AIMP2-DX2 for therapeutic perspectives

  • Hyeon Jin Kim;Mi Suk Jeong;Se Bok Jang
    • BMB Reports
    • /
    • v.57 no.7
    • /
    • pp.318-323
    • /
    • 2024
  • Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-α. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers.

Protaetia brevitarsis larvae extract protects against lipopolysaccharides-induced ferroptosis and inflammation by inhibiting acid sphingomyelinase

  • Woo-Jae Park;Eunyoung Oh;Yookyung Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.5
    • /
    • pp.602-616
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Inflammation and ferroptosis are implicated in various diseases and lipopolysaccharides (LPS) have been linked with these disorders. Recently, many edible insects, such as Gryllus bimaculatus, Protaetia brevitarsis larvae (PB) and Tenebrio molitor larvae, have been recommended as alternative foods because they contain lots of nutritional sources. In this study, we explored the potential of PB extract in preventing LPS-induced inflammation and ferroptosis in Hep3B cells. MATERIALS/METHODS: PB powder was extracted using 70% ethanol and applied to Hep3B cells. Co-treatment with LPS was conducted to induce ferroptosis and inflammation. The anti-inflammatory and anti-ferroptosis mechanisms of the PB extract were confirmed using Western blot, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction analysis. RESULTS: PB extract effectively prevented LPS-induced cell death and restored LPS-induced inflammatory cytokine production, NF-κB signaling, endoplasmic reticulum (ER) stress and ferroptosis. Interestingly, PB extract reduced LPS-induced ceramide increase and acid sphingomyelinase (ASMase) expression. The use of the ASMase inhibitor, desipramine, also demonstrated a reduction in these pathways, highlighting the pivotal role of ASMase in inflammation and ferroptosis. Treatment with each inhibitor revealed that ferroptosis causes ER stress and that NF-κB and MAP kinase pathways are involved in inflammation. CONCLUSION: PB emerges as a potential functional food with inhibitory effects on LPS-induced inflammation and ferroptosis, making it a promising candidate for nutritional interventions.