• Title/Summary/Keyword: alternative energy resources

Search Result 241, Processing Time 0.029 seconds

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Examining Elementary School Students' Awareness about Socio-scientific Issues and Solutions about Environmental Topics by Using Their Drawings (이미지 분석을 통한 초등학생들의 환경 관련 사회적 문제(SSI)와 해결방법에 대한 인식조사)

  • Lee, Yoonjeong;Ju, Eunjeong;Jang, Shinho
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.1
    • /
    • pp.111-122
    • /
    • 2016
  • The purpose of this study was to investigate elementary school students' awareness about socio-scientific issues and solutions about environmental topics by using their drawings. For this study, 489 students were participated in 3 provincial regions, Incheon, Dangjin and Pohang in Korea. The students participated in a drawing activity to express their ideas of the socio-scientific issues and solutions related to 'environmental problems.' The analysis of the data include that the students displayed most awareness towards air pollution, water pollution and trash problems. However, the global environmental problems such as global warming and climate change were perceived very low. The interesting thing was about 8% of the students, who drew global environmental problems, tried to explain their drawings using scientific knowledge. But they revealed misconceptions as well. For instance, they were not good at connecting their science knowledge with environmental problems. About 80% of the students drew the pictures, showing solutions in personal context. They mainly drew 3 kinds of solutions: 'Reduce trash', 'Preserve ecosystem' and 'Saving of resources & energy'. Most students suggested to administrate the action plans. About 19% of the students drew 'campaign to save the forest' or 'develop alternative energy' in social context. And only 1 student drew UN conference to solve the environmental problems in national context.

Design of Self-Starting Hybrid Axial Flux Permanent Magnet Synchronous Motor Connected Directly to Line

  • Eker, Mustafa;Akar, Mehmet;Emeksiz, Cem;Dogan, Zafer;Fenercioglu, Ahmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1917-1926
    • /
    • 2018
  • In view of the current state of the reserves of electric energy generated resources and the share of electric motors in electricity consumption, many researches and studies related to efficiency in electric motors are being made. The presented work is related to the Axial Flux Permanent Magnet Synchronous Motor (AF-PMSM), which has recently undergone significant work based on the development of magnet and motor technology. In this study, a novel AF-PMSM was designed analytically through Finite Element Method (FEM) which can be started by connecting to a line such as an asynchronous motor in a transient state and can operate with high efficiency and power factor after synchronization in steady state without the need for an expensive motor drive. According to the obtained FEM results, a design with an efficiency class of IE4 of 5.5 kW shaft power, a 4 poles motor was obtained. As a result, economic calculations indicate that the extra cost of the designed Line start AF-PMSM with respect to the asynchronous motor is rapidly compensated by energy saving due to a more efficient operation, especially constant speed operations. As a result of the analysis obtained, the targeted values are reached. For induction motors and radial flux permanent magnet synchronous motors, a good alternative motor that can operate with high efficiency and power factor has been obtained.

Production of C4-C6 for Bioenergy and Biomaterials (바이오에너지 및 바이오화학원료인 C4-C6 생산)

  • Kim, Byung-Chun;Yi, Sung Chul;Sang, Byoung-In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.447-452
    • /
    • 2011
  • Depletion of petroleum increased the need of alternative energy and chemical resources. Biomass, a renewable resource, can be transformed to bioenergy and biomaterials, and the materials from biomass will ultimately substitute petroleum based energy and chemical compounds. In this perspective, production of C4-C6 compounds for bioenergy and biomaterials are described for understating of current research progress. n-Butanol and n-butyric acid, the major C4 compounds, are produced by Clostridium tyrobutyricum, Clostridium beijerinckii, and Clostridium acetobutylicum. n-Hexanoic acid, a typical C6 compound, is produced by Clostridium kluyveri and Megasphaera elsdenii. Reported maximum amount of n-butanol, n-butyric acid and n-hexanoic acid was 21, 55, and 19 g/L, respectively, and extraction of these C4-C6 compounds are induced increase production by those anaerobic bacteria. In addition, a new bacterium Clostridium sp. BS-1 produced 5 g/L of n-hexanoic acid using galactitol.

Investigating the performance of polymer cement resistance in football stadium construction

  • Yangguang Zhang
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

A Study on KSNP Environmental Color Design (개선형 한국 표준 원자력 발전소의 친환경 색채디자인 연구)

  • Kim, Yeon-Jung
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.233-240
    • /
    • 2004
  • Living in the modern age with well-developed scientific technologies, all of us are enjoying convenient lives because of 'energy'. Korea, poor in resources, is importing a large portion of its energy sources from abroad but energy consumption shows an upward tendency due to the continuing economic growth and the improvement of living conditions. The atomic energy is considered a self-reliant, alternative energy source like our country. However, it is necessary to educate the people on and publicize atomic power generation in the face of the widespread negative recognition that the atomic power plant is a hazardous facility. The study approaches to these matters with a human-friendly and environment-friendly coloring plan in the perspective of environment coloring plan. The study aims to minimize negative images of the atomic power, while highlighting its friendly and positive images so as to enhance the confidence of the people on the atomic power and to create a clean image for the atomic power. For this goal, the study examined and analyzed cases of Japanese nuclear power plants and domestic nuclear power plants, and also carried out an on-site survey in the sites in which nuclear power plants would be constructed to extract concrete colors through the analyses of their natural environment and actual conditions. The study also carried out a survey of residents in the regions to induce their participation, and reflected the survey results to the coloring plan. The study is expected to create a stable and friendly image of the nuclear power plant through materializing its environment-friendly image and remove negative recognition that the people have on the nuclear power plant. It also attempted an external environment-coloring plan a s a strategic means for positive publicity and through this, is expected to ultimately contribute to the creation of the new images of nuclear ower plants.

  • PDF

Priority Decision of Small Hydropower Development using Spatial Multi-Criteria Decision Making (공간 다기준의사결정을 활용한 소수력 개발의 우선순위 결정)

  • Kim, Gil-Ho;Yi, Choong-Sung;Yeo, Gyu-Dong;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1029-1038
    • /
    • 2009
  • Recently, it is expected that small hydropower (SHP) could potentially provide sufficient amounts of alternative energy in Korea where there is an abundance of potential sites and where social efforts are being made to reduce the emissions of green house gases. In the past, the resources survey for SHP development has been carried out using onsite surveys and paper maps, which incurred a great deal of time and cost. Furthermore, the tools for decision making such as determining development priorities or evaluating feasibility have been considered only economic aspect and focused on the performance characteristics of power generation. However, as the concept of sustainable development has been being advanced in recent years, especially focused on human-social, environmental and ecological in addition to economical sector; the consideration of these multiple criteria has become essential for sustainable SHP development. This study aims to propose the spatial multi-criteria decision making (MCDM) methodology for determining priorities among a number of locations on the planning stage of SHP development using AHP and GIS. The proposed methodology is applied for determining development priorities among the SHP locations in Cho River basin and this study presents the detailed spatial information data and the results of development priorities. As a fundamental work, this study will be beneficial to the future activation of SHP development and will help the decision making in evaluating the feasibility of SHP development.

A Case Study on The Data Processing and Interpretation of Aeromagnetic Survey Conducted in The Low Latitude Area: Stung Treng, Cambodia (저위도 캄보디아 스퉁트렝 지역의 항공자력탐사 자료처리 및 해석)

  • Shin, Eun-Ju;Ko, Kwang-Beom;You, Young-June;Jung, Yeon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.136-143
    • /
    • 2012
  • In this case study, we present the various and consistent processing techniques for the reasonable interpretation of aeromagnetic data. In the processing stage, we especially focused on the three major respects. First, in the low latitude area, severe artifacts are occurred as a result of reduction to the pole technique. To overcome this problem, variable alternative methods were investigated. From the comparison of each technique, we concluded that energy balancing method gives more fruitful result. Second, because of limited a priori information, it is nearly impossible to employ detailed geological survey due to wide and thick spreading of soils in the survey area. So we especially investigated the new techniques such as extracting slope, curvature and aspect information mainly used in GIS field as well as conventional methods. Finally, by using the Euler deconvolution, we extracted the depth information on the magnetic anomalous body. From the synthetic analysis between depth information and previous discussed results, the detailed future survey area was proposed. We think that a series of processing techniques discussed in this study may perform an important role in the domestic and abroad resource development project as a useful guideline.

Characteristics of Thermophilic Methane Fermentation Using the Organic Wastes (유기성 폐기물을 이용한 고온 메탄 발효의 특성)

  • Kim, Nam-Cheon;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In this work, it was investigated that various aspects of process, application situation, merits and short-coming results of the thermophilic methane fermentation with highly concentrated organic waste substances such as sewage sludges, food wastes and excretions. The merits of this methane fermentation were that it had a very fast reaction rate and was possible to proceed in high loads. It was also high in mortality for pathogenic microorganism and the digested sludge was more hygienic. However, the short-comings were that more energy was required for heating in the fermentation facility, no surplus energy could be gained from low concentration of organic waste, the fermentation treatment dropped level of water quality, thus burdens discharging process of water. Especially, the high concentration of methane fermentation could possibly lack nutritious salt and could face the disturbance by ${NH_4}^+-N$, a proper alternative was required. In general, thermophilic methane fermentation was considered as a better mean in disposing of cow excretion and food waste which were highly concentrated organic wastes. On the other hand, under the condition where the concentration of waste material was low and the high concentrate waste material became higher than 3,000 mg/L in ${NH_4}^+-N$, thermophilic methane fermentation resulted less desirable outcome.

  • PDF