• Title/Summary/Keyword: alternative energy resources

Search Result 243, Processing Time 0.028 seconds

Agricultural Systems for Saline Soil: The Potential Role of Livestock

  • Masters, D.G.;Norman, H.C.;Barrett-Lennard, E.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.296-300
    • /
    • 2005
  • Human-induced soil salinity is becoming a major threat to agriculture across the world. This salinisation occurs in both irrigated and rain-fed agricultural zones with the highest proportions in the arid and semi-arid environments. Livestock can play an important role in the management and rehabilitation of this land. There are a range of plants that grow in saline soils and these have been used as animal feed. In many situations, animal production has been poor as a result of low edible biomass production, low nutritive value, depressed appetite, or a reduction in efficiency of energy use. Feeding systems are proposed that maximise the feeding value of plants growing on saline land and integrate their use with other feed resources available within mixed livestock and crop farming systems. Salt-tolerant pastures, particularly the chenopod shrubs, have moderate digestible energy and high crude protein. For this reason they represent a good supplement for poor quality pastures and crop residues. The use of salt-tolerant pasture systems not only provides feed for livestock but also may act as a bio-drain to lower saline water tables and improve the soil for growth of alternative less salt tolerant plants. In the longer term there are opportunities to identify and select more appropriate plants and animals for saline agriculture.

The Properties of Wind Analyzed by Observation of Tethered Sonde and Sodar in Gwangyang Coastal Area (Tethered Sonde와 Sodar 관측으로 분석한 광양만 지역의 풍환경 특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lim, Heon-Ho;Kim, Dong-Hyuk;Kim, Min-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.324-326
    • /
    • 2008
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost of power and area of tower. To estimate the wind power resource, it is necessary to make an wind resource map first. On the study of wind resource map in the Korean peninsula, Southern coast was needed to investigate the possibility of developing wind power complex because of good wind resources. In this study, we made a vertical observation to analyze the properties of wind in coastal area. From tethered sonde observation, we knew that synoptic effect had an influence higher in second day than first day. This means local wind circulation is generated on first day but not second day. The local wind made vertical wind shear strong in first day. Also, there was large difference of wind speed between layers at night time by analysis of SODAR observation.

  • PDF

A Study on research of suitable site of Floated PV System (수상 태양광발전 적지조사 기법에 관한 연구)

  • Choi, Hyung-Cheol;Kim, Ye-Jin;Kim, Eun-Gi;Lee, Jong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1400-1401
    • /
    • 2011
  • RPS(Renewable Portfolio Standard) recently with the introduction of a new solar power development as the market expands, land shortage of solar power as an alternative site for installing solar water development has emerged. Solar water dams, reservoirs and water by taking advantage of available solar power development a new concept of private forest land in a way does not involve destruction of the forest land and water resources through efficient use of environmentally friendly energy production and water quality improvement There are a variety of benefits. This paper won the nation's first solar power to enforce the selection of the optimal location for solar power's award for planning theory and research techniques are intended to establish. Award of the solar system through the analysis of a few research-related materials and renewable energy systems project implementation process to establish an initial investigation techniques as well as the existing dam located about fitness will be assessed. In this study, solar water conducting business in the current analysis with considerable planning and installation of solar installation for the economic and environmental cost of the evaluation period and is expected to be able to give you one.

  • PDF

1KW Converter for Fuel cell using unregulated DC-DC Converter (고정시비율 DC-DC 컨버터를 사용한 1KW급 연료전지용 컨버터)

  • Jung, Yong-Min;Yoo, Ho-Won;Lim, Seung-Beom;Lee, Kyung-In;Oh, Eun-Tae;Hong, Soon-Chan;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.373-375
    • /
    • 2008
  • Studying for environmentally-friendly and efficient energy source is now actively under way on because problems like environmental pollution and exhaust of natural resources are in issue. Pure Cell which is an alternative energy source has low voltage and high current characteristic, therefore boost up voltage converter and DC-AC converter is required to use as a common power source. In this paper, DC-DC converter which has high efficient and high power density is proposed and verified by experimental result.

  • PDF

A Study on the Method and Planning Characteristics of Environment-friendly Skyscraper - Focused on the Analysis of Environment-friendly Skyscraper in other countries - (친환경 초고층 건축 계획 특성 및 기법에 관한 연구 - 해외 친환경 초고층 건축 분석을 중심으로 -)

  • Kim, Ja Kyung
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.27-36
    • /
    • 2008
  • Urban architecture density is getting higher, and this trend is expected to continue in the future. Therefore, skyscrapers are being brought into relief as future alternative architecture beyond symbolic meaning in the aspect of demand and supply of urban space. However, skyscrapers which were newly built have many problems such as consumption of enormous amounts of energy, destruction of natural environment, and traffic jam. For this reason, environment-friendly skyscrapers based on the concept such as Green Building and Green Skyscraper started to be built around the world. However, plans or evaluation standards, which take account of the environment-friendly aspect of skyscrapers, leave much to be desired. And especially it is hard to find environment-friendly skyscrapers. Therefore, this study aims to establish the concept of environment-friendly skyscrapers that has not properly been defined, and to find realistic planning methods and practical alternatives through the analysis of the works that have brilliant ideas about environment-friendly architectural method. From the perspective of architectural planning, we did case analysis focused on site planning, form planning, elevation and floor planning, and tried to give useful ideas for high-rise architectural planning in Korea by finding practical solution focused on the active use of natural energy, saving resources, the reduction of wastes, natural architectural environment design and natural friendly system from the view of environment-friendly technological analysis.

Vertical Axis Tidal Turbine Design and CFD hydrodynamic Analysis (CFD를 이용한 수직축 터빈 설계 및 유동특성 분석)

  • Jo, Chulhee;Ko, Kwangoh;Lee, Junho;Rho, Yuho;Lee, Kanghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Due to the global warming, the need to secure the alternative resources has become more important worldwide. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable sites for the application of TCP(Tidal current power) in Korea. Not only from the current produced from the high tidal range, but also it can be widely applied to the offshore jetties and piers. The VAT(Vertical axis turbine) system could be very effective tidal device to extract the energies from the attacking flow to the structures. For the relatively slow current speed, the VAT system could be more effective application than HAT(Horizontal axis turbine) device. The performance of VAT can be evaluated by various parameters including number of blades, shape, sectional size, diameters and etc. The paper introduces the multi-layer vertical axis tidal current power system with savonius turbine. The turbine was designed with consideration of optimal blade numbers and the performance was simulated by CFD analysis.

  • PDF

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

Analysis of the Impact of the 8th Basic Plan for Long-term Electricity Supply and Demand on the District Heating Business Through Optimal Simulation of Gas CHP (가스 열병합발전 최적 시뮬레이션 분석을 통한 집단에너지 사업자에 미치는 8차 전력 수급계획의 영향 분석)

  • Kim, Young Kuk;Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.655-662
    • /
    • 2018
  • To respond effectively to climate change following the launch of the new climate system, the government is seeking to expand the use of distributed power resources. Among them, the district heating system centered on Combined Heat and Power (CHP) is accepted as the most realistic alternative. On the other hand, the government recently announced the change of energy paradigm focusing on eco-friendly power generation from the base power generation through $8^{th}$ Basic Plan for Long-term Electricity Supply and Demand(BPE). In this study, we analyzed the quantitative effects of profit and loss on the CHP operating business by changing patterns of the heat production, caused by the change of energy paradigm. To do this, the power market long-term simulation was carried out according to the $7^{th}$ and $8^{th}$ BPE respectively, using the commercialized power market integrated analysis program. In addition, the CHP operating model is organized to calculate the power and heat production level for each CHP operation mode by utilizing the operating performance of 830MW class CHP in Seoul metropolitan area. Based on this, the operation optimization is performed for realizing the maximum operating profit and loss during the life-cycle of CHP through the commercialized integrated energy optimization program. As a result, it can be seen that the change of the energy paradigm of the government increased the level of the ordered power supply by Korean Power Exchange(KPX), decreased the cost of the heat production, and increased the operating contribution margin by 90.9 billion won for the 30 years.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Development and Performance Evaluation of the Expanded Metal Rockfall Protection Fence

  • Hwang, Young-Cheol;Kim, Bum-Joo;Noh, Heung-Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.35-45
    • /
    • 2005
  • The rockfall protection fence is one of the most common rockfall protection methods in Korea. The typical rockfall protection fence consists mainly of three parts ; H-beam supports, wire meshes, and wire ropes. The design of the rockfall protection fence is made such that the total energy absorbing capacity of the fence. Therefore, resulting from the combined energy absorbing capacity of the three parts is larger than the falling energy of rocks. In present study, a new rockfall protection fence, constructed using expanded metals instead of the existing wire rope and wire mesh for the typical type of rockfall protection fence, was evaluated on its performance by conducting both laboratory and field tests. Also, for a comparison, the same tests were performed on the typical rockfall protection fence. The test results revealed that the expanded material is an economic alternative to the existing protection materials and the expanded metal rockfall protection fence exhibits the higher energy absorbing capacity compared to that of the typical rockfall protection fence.

  • PDF