• Title/Summary/Keyword: alternative complement pathway

Search Result 50, Processing Time 0.028 seconds

Atypical Hemolytic Uremic Syndrome in a 13-year-old Lao Girl: A Case Report

  • Kedsatha, Philavanh;Cheong, Hae Il;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.23 no.1
    • /
    • pp.43-47
    • /
    • 2019
  • Atypical hemolytic uremic syndrome (aHUS), a rare form of thrombotic microangiopathy, is distinguished from the typical form by the absence of a preceding verotoxin-producing Escherichia coli infection. Notably, aHUS occurs in association with genetic or acquired disorders causing dysregulation of the alternative complement pathway. Patients with aHUS may show the presence of anti-complement factor H (CFH) autoantibodies. This acquired form of aHUS (antiCFH-aHUS) primarily affects children aged 9-13 years. We report a case of a 13-year-old Lao girl with clinical features of aHUS (most likely anti-CFH-aHUS). The initial presentation of the patient met the classical clinical triad of thrombotic microangiopathy (microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury) without preceding diarrheal illness. Low serum levels of complement 3 and normal levels of complement 4 indicated abnormal activation of the alternative complement pathway. Plasma infusion and high-dose corticosteroid therapy resulted in improvement of the renal function and hematological profile, although the patient subsequently died of infectious complications. This is the first case report that describes aHUS (possibly anti-CFH-aHUS) in Laos.

Characterization of Two Glucans Activating an Alternative Complement Pathway from the Fruiting Bodies of Mushroom Pleurotus ostreatus

  • Kweon, Mee-Hyang;Lim, Wang-Jin;Yang, Han-Chul;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.267-271
    • /
    • 2000
  • Abstract Two glucans (PONGa and PONGb) differing in their anomeric and glycosidic linkage structures were isolated from the water-insoluble materials (PON) of Pleurotus ostreatus basidiocarps, which activated the complement system and were almost soley composed of D-glucose. The isolatIon was achieved by repeated precipitations with ethanol and adsorption on concanavalin A (Con A) of paN suspension in thymol/NaCL Based on methylation analysis. IR, GLC-MS, $^1H,{\;}and{\;}^{13}C-NMR$ spectroscopies, PONGa was found to be a branched a-glucan composed of ${\alpha}-linked$ D-glucopyranose residues and ${\alpha}-linked$ units with 6-branching points, whereas PONGb was a linear ${\beta}-1,3-glucan$ composed mainly of ${\beta}-1,3-linked$ D-glucopyranose residues. The PONGb particles reacted more potently than the PONGa particles as C3 activator in alternative complement hemolysis and crossed-immunoelectrophoresis using anti-human C3, thereby suggesting that the complement activating components of PON were ${\beta}-(13)-glucans rather$ than ${\alpha}-glucan$ components.onents.

  • PDF

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

Characterization and Action Mode of Anti-Complementary Substance Prepared from Lactobacillus plantarum (Lactobacillus plantarum 균체 중 항보체 활성물질의 특성과 작용양식)

  • Kim, Jang-Hyun;Shin, Kwang-Soon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.290-295
    • /
    • 2002
  • Among 12 lactic acid bacteria examined for their abilities to activate the complement system by hemolytic complement assay $(TCH_{50})$, Lactobacillus plantarum previously isolated from Kimchi showed high anti-complementary activity. The anti-complementary activity of the cell wall fraction of L. plantarum was more potent than that of the cytosol fraction, and both activities showed dose dependency. These high activities of the cytosol and the cell wall fractions were relatively resistant to the digestion with pronase, but sharply decreased after the treatment of $NaIO_4$. These results suggested that the complement activation by the cytosol and the cell wall fractions was mainly due to their polysaccharides. By the cross-immunoelectrophoresis using anti-human C3, the C3 activation products from both fractions were identified in $Ca^{++}$-free condition. Anti-complementary activity $(ITCH_{50})$ of the cell wall fraction was retained under the same condition, whereas that of the cytosol fraction was reduced considerably. From these results, it was inferred that the mode of complement activation by the cell wall fraction was mainly via alternative pathway, and that of the cytosol fraction was via both alternative and classical pathways.

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Pathology of C3 Glomerulopathy

  • Shin, Su-Jin;Seong, Yoonje;Lim, Beom Jin
    • Childhood Kidney Diseases
    • /
    • v.23 no.2
    • /
    • pp.93-99
    • /
    • 2019
  • C3 glomerulopathy is a renal disorder involving dysregulation of alternative pathway complement activation. In most instances, a membranoproliferative pattern of glomerular injury with a prevalence of C3 deposition is observed by immunofluorescence microscopy. Dense deposit disease (DDD) and C3 glomerulonephritis (C3GN) are subclasses of C3 glomerulopathy that are distinguishable by electron microscopy. Highly electron-dense transformation of glomerular basement membrane is characteristic of DDD. C3GN should be differentiated from post-infectious glomerulonephritis and other immune complex-mediated glomerulonephritides showing C3 deposits.

Micro-screening Method for the Anticomplement Substances from Natural Resources (천연유래의 항보체 활성물질 선발을 위한 미량탐색법)

  • Oh, Sei-Ryang;Jung, Keun-Young;Lee, Hyeong-Kyu
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.147-152
    • /
    • 1996
  • To screen inhibitors on complement system from natural resources, micro-screening method was established by using hemolytic complement assay. Complement fixation reaction was carried out in the microplate system. For standard hemolysis (50% hemolysis) of the classical pathway (CP), hemolysin and complement serum were diluted to $1/75{\sim}1/100\;and\;1/80{\sim}1/120$, respectively, when sheep erythrocytes were $5.0{\times}10^8\;cells/ml$. In case of the alternative pathway (AP), complement serum was diluted to 1/5 and EGTA and $Mg^{2+}$ were added 4 mM, $4{\sim}8\;mM$, respectively, when rabbit erythrocytes were $4.0{\times}10^8\;cells/ml$. Dimethyl sulfoxide was used for the assay of non-aquous soluble compounds or extracts and its final concentration was not more than 1%. Three phenylpropanoids showed anticomplementary activities in proportion to the concentration for both pathways and rosmarinic acid exihibited the highest inhibitory activities: $5.4{\pm}3.6%(0.063\;mM){\sim}95.8{\pm}0.2%(0.5\;mM)\;and\;35.1{\pm}0.9%(0.063\;mM){\sim}95.6{\pm}1.1%(1\;mM)$ on the CP and the AP, respectively.

  • PDF

Anticomplementary Activities of Rhamnan Sulfate extracted from Monostroma nitidum (홑파래로부터 추출한 Rhamnan Sulfate의 항보체 활성)

  • 빈재훈;김현대;류병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.490-495
    • /
    • 1996
  • The anti-compliment activity of hemolytic complementary assay(TCH50) of rhamnan sulfate fraction obtained from water extracts of Monostroma nitidum was investigated Rhamnan sulfate Fraction, F-4-3 fraction appeared relatively strong anti-complementary activity which decreased TCH50 over 60% than that comparison with control, and F-4-3 considerably inhibited ACH50. F-4-3 inhibited formation of the classical pathway C3 convertase or C4 cleavage. The results also indicate the mode of complement activation by F-4-3 fraction shows not only the classical pathway but also the alternative pathway.

  • PDF

Hemolytic uremic syndrome (용혈성 요독 증후군)

  • Park, Hye Won
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.931-937
    • /
    • 2007
  • The hemolytic uremic syndrome (HUS) is a rare disease of microangiopathic hemolytic anemia, low platelet count and renal impairment. HUS usually occurs in young children after hemorrhagic colitis by shigatoxin-producing enterohemorrhagic E. coli (D+HUS). HUS is the most common cause of acute renal failure in infants and young children, and is a substantial cause of acute mortality and morbidity; however, renal function recovers in most of them. About 10% of children with HUS do not reveal preceding diarrheal illness, and is referred to as D- HUS or atypical HUS. Atypical HUS comprises a heterogeneous group of thrombomicroangiopathy (TMA) triggered by non-enteric infection, virus, drug, malignancies, transplantation, and other underlying medical condition. Emerging data indicate dysregulation of alternative complement pathway in atypical HUS, and genetic analyses have identified mutations of several regulatory genes; i.e. the fluid phase complement regulator Factor H (CFH), the integral membrane regulator membrane cofactor protein (MCP; CD46) and the serine protease Factor I (IF). The uncontrolled activation of the complement alternative pathway results in the excessive consumption of C3. Plasma exchange or plasma infusion is recommended for treatment of, and has dropped the mortality rate. However, overall prognosis is poor, and many patients succumb to end-stage renal disease. Clinical presentations, response to plasma therapy, and outcome after renal transplantation are influenced by the genotype of the complement regulators. Thrombotic thrombocytopenic purpura (TTP), another type of TMA, occurs mainly in adults as an acquired disease accompanied by fever, neurologic deficits and renal abnormalities. However, less frequent cases of congenital or hereditary TTP associated with ADAMTS-13 (a disintegrin and metalloprotease, with thrombospondin 1-like domains 13) gene mutations have been reported, also. Recent advances in molecular genetics better allow various HUS to be distinguished on the basis of their pathogenesis. The genetic analysis of HUS is important in defining the underlying etiology, predicting the genotype-related outcome and optimizing the management of the patients.

Action modes of the anti-complementary polysaccharides purified from Arecae pericarpium (대복피로부터 정제된 보체활성화 다당의 작용양식)

  • Shin, Kwang-Soon;Cho, Hong-Yon;Sung, Ha-Chin;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.462-469
    • /
    • 1992
  • Two kinds of complement activating (anti-complementary) polysaccharides, which were expected to be immunomodulators were purified from Arecae Pericarpium (the pericarps of Areca catechu), and their action modes have been studied. The active polysaccharides, AC-2-IIIa and AC-2-IIIc from Arecae Pericarpium showed dose-dependent anti-complementary activities on $TCH_{50}$. The anti-complementary activities of AC-2-IIIa and AC-2-IIIc in metal ion-free condition were completely decreased in comparison with control whereas in case of $Ca^{2+}$-free condition, these activities were maintained, considerably. Also AC-2-IIIa and AC-2-IIIc showed relatively potent alternative complement pathway activities. Furthermore, after incubation of the normal human serum with polysaccharide of Arecae Pericarpium in the absence of $Ca^{2+}$ ion, a cleavage of C3 in the serum was found to have occurred through immunoelectrophoresis (IEP) with anti-human C3. Also, from the results of IEP using anti-human whole serum, the ratios of the height of 3rd peak to ${\alpha}2-M$ peak by AC-2-IIIa and AC-2-IIIc proved to be $1.50{\pm}0.04$ and $1.22{\pm}0.08$, respectively. These results indicate that the modes of complement activation by AC-2-IIIa and AC-2-IIIc from Arecae Pericarpium are via both the classical pathway and the alternative pathway.

  • PDF