• Title/Summary/Keyword: alternating direction implicit scheme

Search Result 14, Processing Time 0.016 seconds

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Flow Characteristics of a Side-Weir in Rectangular Channel (구형 수로내 횡월류 흐름의 특성)

  • Park, Tae-Seon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.251-259
    • /
    • 2002
  • Flow characteristics occurring a side-weir overflow in rectangular channel is investigated in this study. A numerical model based on the two -dimensional shallow-water equations is employed to review the factors influencing on the side- weir overflow discharge and the change of flow depths and velocities. It is found that the discharge coefficient which has the most significant influence on the overflow is affected by geometric characteristics of a side-weir, Froude number of the main channel flow and the flow depth of the main channel at the starting point of a side-weir. And the discharge coefficient applicable to a practical design of a side-weir is proposed by deriving a relationship between Froude number of the main channel flow at the starting point of a side-weir and Froude number of the main channel flow.

Development of Three-dimensional Baroclinic Hydrodynamic Model and flow Patterns of the Suyoung Bay (3차원 경합 海水流動 모델의 開發과 水營蠻의 폐수유동)

  • 김차겸;이종섭
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.86-100
    • /
    • 1993
  • Three-dimensional baroclinic hydrodynamic model, BACHOM-3, is developed using ADI finite difference scheme. The model is applied to a uni-nodal standing wave in a rectagular basin. The model results for the surface elevation and velocities coincide with the analytical results. To verify the field applicability of the model and to investigate the flow patterns of the Suyoung Bay in Pusan, Korea, the model is applied to the bay. The numerically predicted velocity predicted velocity fields during spring tide at normal river flow are compared with field measurements, the comparisons show good agreement. A clockwise residual circulations at the first level (depth = 0∼2m) and the second level (depth=2∼5 m) of the central part of the bay occur, and the ebb flow is stronger than the flood flow. Computed velocity fields show that the phase difference of velocities between the surface layer and bottom layer occurs and the phase lag increases with height from the bottom. Then, the model is applied successfully for the computation of flow fields considering flood river flow and wind effects. When the wind is blowing toward the land from the sea, the flow patterns at the surface layer correspond with the wind direction, but the flow patterns at the near solid boundary of the lower layer show opposite currents to the wind direction.

  • PDF

comparison of Numercal Methods for Obtaining 2-D Impurity Profile in Semiconductor (반도체 내에서의 2차원 불순물 분포를 얻기 위한 수치해법의 비교)

  • Yang, Yeong-Il;Gyeong, Jong-Min;O, Hyeong-Cheol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.95-102
    • /
    • 1985
  • An efficient numerical scheme for assessing the two-dimensional diffusion problem for modelling impurity profile in semiconductor is described. 4 unique combination of ADI (Al-ternating Direction Bmplicit) method and Gauss Elimination has resulted in a reduction of CPU time for most diffusion processes by a factor of 3, compared to other iteration schemes such as SOR (Successive Over-Relaxation) or Stone's iterative method without additional storage re-quirement. Various numerical schemes were compared for 2-D as well as 1-0 diffusion profile in terms of their CPU time while retaining the magnitude of relative error within 0.001%. good agree-ment between 1-D and 2-D simulation profile as well as between 1-D simulation profile and experiment has been obtained.

  • PDF