• Title/Summary/Keyword: alternating direction implicit(ADI)

Search Result 29, Processing Time 0.021 seconds

The Container Pose Measurement Using Computer Vision (컴퓨터 비젼을 이용한 컨테이너 자세 측정)

  • 주기세
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.702-707
    • /
    • 2004
  • This article is concerned with container pose estimation using CCD a camera and a range sensor. In particular, the issues of characteristic point extraction and image noise reduction are described. The Euler-Lagrange equation for gaussian and random noise reduction is introduced. The alternating direction implicit(ADI) method for solving Euler-Lagrange equation based on partial differential equation(PDE) is applied. The vertex points as characteristic points of a container and a spreader are founded using k order curvature calculation algorithm since the golden and the bisection section algorithm can't solve the local minimum and maximum problems. The proposed algorithm in image preprocess is effective in image denoise. Furthermore, this proposed system using a camera and a range sensor is very low price since the previous system can be used without reconstruction.

Solver for the Wavier-Stokes Equations by using Initial Guess Velocity (속도의 초기간 추정을 사용한 Navier-Stokes방정식 풀이 기법)

  • Kim, Young-Hee;Lee, Sung-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.445-456
    • /
    • 2005
  • We propose a fast and accurate fluid solver of the Wavier-Stokes equations for the physics-based fluid simulations. Our method utilizes the solution of the Stokes equation as an initial guess for the velocity of the nonlinear term in the Wavier-Stokes equations. By guessing the initial velocity close to the exact solution of the given nonlinear differential equations, we can develop remarkably accurate and stable fluid solver. Our solver is based on the implicit scheme of finite difference methods, that makes it work well for large time steps. Since we employ the ADI method, our solver is also fast and has a uniform computation time. The experimental results show that our solver is excellent for fluids with high Reynolds numbers such as smoke and clouds.

ALTERNATING DIRECTION IMPLICIT METHOD FOR TWO-DIMENSIONAL FOKKER-PLANCK EQUATION OF DENSE SPHERICAL STELLAR SYSTEMS

  • Shin, Ji-Hye;Kim, Sung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.91-97
    • /
    • 2007
  • The Fokker-Planck (FP) model is one of the commonly used methods for studies of the dynamical evolution of dense spherical stellar systems such as globular clusters and galactic nuclei. The FP model is numerically stable in most cases, but we find that it encounters numerical difficulties rather often when the effects of tidal shocks are included in two-dimensional (energy and angular momentum space) version of the FP model or when the initial condition is extreme (e.g., a very large cluster mass and a small cluster radius). To avoid such a problem, we have developed a new integration scheme for a two-dimensional FP equation by adopting an Alternating Direction Implicit (ADI) method given in the Douglas-Rachford split form. We find that our ADI method reduces the computing time by a factor of ${\sim}2$ compared to the fully implicit method, and resolves problems of numerical instability.

A partial proof of the convergence of the block-ADI preconditioner

  • Ma, Sang-Back
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.495-501
    • /
    • 1996
  • There is currently a regain of interest in ADI (Alternating Direction Implicit) method as a preconditioner for iterative Method for solving large sparse linear systems, because of its suitability for parallel computation. However the classical ADI is not applicable to FE(Finite Element) matrices. In this paper wer propose a Block-ADI method, which is applicable to Finite Element metrices. The new approach is a combination of classical ADI method and domain decompositi on. Also, we provide a partial proof of the convergence based on the results from the regular splittings, in case the discretization metrix is symmetric positive definite.

  • PDF

Dispersion Analysis of the Waveguide Structures by Using the Compact 2D ADI-FDTD (Compact 2D ADI-FDTD를 이용한 도파관 구조의 분산특성 연구)

  • 어수지;천정남;박현식;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.38-45
    • /
    • 2002
  • This paper presents the new Compact 2D ADI-FDTD(Alternating-Direction Implicit Finite-Difference Time-Domain) method, where the time step is no longer restricted by the numerical stability condition. This method is an accelerating algorithm for the conventional Compact 2D FDTD method. To validate this algorithm, we have analyzed the dispersion characteristics of the hollow rectangular waveguide and the shielded microstrip line. The results of the proposed method are very well agreed with those of both the conventional analytic method and the Compact 2D FDTD method. The CPU time for analysis of this method is very much reduced compared with the conventional Compact 2D FDTD method. The proposed method is valuable as a fast algorithm in the research of dispersion characteristics of the waveguide structures.

Application of 3D ADI-FDTD Method for GPR System Simulation (GPR 시스템 시뮬레이션을 위한 3차원 ADI-FDTD 기법의 적용)

  • Jeon Won Sok;Yeo Woonsik;Yun Seung Hyun;Kim Hyeongdong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.131-134
    • /
    • 2004
  • This paper has been studied a ADI-FDTD(Alternating Direction Implicit Finite Difference Time Domain ) algorithm using an alternating Direction time-stepping scheme for GPR( Ground-Penetrating Radar ) system simulation. We did the numerical formulations for three-dimensional ADI-FDTD algorithm and PML(Perfect Matched Layer), and made an simple experiment on a arbitrary cube with programed algorithms. And then we compared its computed results with those of conventional FDTD.

  • PDF

An Alternating Implicit Block Overlapped FDTD (AIBO-FDTD) Method and Its Parallel Implementation

  • Pongpaibool, Pornanong;Kamo, Atsushi;Watanabe, Takayuki;Asai, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.137-140
    • /
    • 2002
  • In this paper, a new algorithm for two-dimensional (2-D) finite-difference time-domain (FDTD) method is presented. By this new method, the maximum time step size can be increased over the Courant-Friedrich-Levy (CFL) condition restraint. This new algorithm is adapted from an Alternating-Direction Implicit FDTD (ADI-FDTD) method. However, unlike the ADI-FDTD algorithm. the alternation is performed with respect to the blocks of fields rather than with respect to each respective coordinate direction. Moreover. this method can be efficiently simulated with parallel computation. and it is more efficient than the conventional FDTD method in terms of CPU time. Numerical formulations are shown and simulation results are presented to demonstrate the effectiveness and efficiency of our proposed method.

  • PDF

Numerical Investigation of an Unconditionally Stable Compact 2D FDTD Based on the Alternating-Direction Implicit Scheme

  • Saehoon Ju;Jeongnam Cheon;Kim, Hyung-Hoon;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • An unconditionally stable compact 2D Alternating-Direction Implicit (ADI) FDTD method for calculating dispersion characteristics of waveguide structures is proposed. The numerical stability and numerical dispersion relation of the proposed method are also presented and discussed. Numerical wavelengths for the dominant and higher order modes in a hollow waveguide are obtained from numerical simulations and compared with those from the analytical dispersion relation. The numerical results show that the proposed scheme has the potential to successfully analyze a class of waveguides having locally fine geometry with reduced numerical costs.

A Three-Dimensional Locally One-Dimensional Multiresolution Time-Domain Method Using Daubechies Scaling Function

  • Ryu, Jae-Jong;Lee, Wu-Seong;Kim, Ha-Chul;Choi, Hyun-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.211-217
    • /
    • 2009
  • A three-dimensional locally one-dimensional multiresolution time-domain(LOD-MRTD) method is introduced and unconditional stability is proved analytically. The updating formulations have fewer terms on the right-hand side than those of an alternating direction implicit MRTD(ADI-MRTD). The validation of the method is presented using the resonance frequency problem of an empty cavity. The reduction of the numerical dispersion technique is also combined with the proposed method. The numerical examples show that the combined method can improve the accuracy significantly.

Numerical Dispersion Relation for the 2-D ADI-FDTD Method (2-D ADI-FDTD의 수치적 분산특성에 관한 연구)

  • 주세훈;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.181-186
    • /
    • 2003
  • This paper presents a numerical dispersion relation for the two-dimensional finite-difference time-domain method based on the alternating-direction implicit time-marching scheme(2-D ADI-FDTD), which method has the potential to considerably reduce tile number of time iterations especially in case where the fine spatial lattice relative to the wavelength is used to resolve fine geometrical features. The proposed analytical relation for 2-D ADI-FDTD is compared with those relations in the Previous works. Through numerical tests, the dispersion equation of this work was shown as correct one for 2-D ADI-FDTD.