• Title/Summary/Keyword: alpha-adrenoceptor antagonist

Search Result 51, Processing Time 0.023 seconds

Effects of $\alpha$-Adrenoceptor Antagonists on Phenylephrine-induced Contraction in the Endothelium-denuded Rat Aorta (내피세포를 제거한 흰쥐 대동맥에서 Phenylephrine이 일으킨 수축반응에 대한 $\alpha$-수용체 길항제의 영향)

  • 홍승철;강맹희;박상일;박미선;최수경;정준기;서석수
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.416-426
    • /
    • 1991
  • The effects of an irreversible or a reversible $\alpha_1$-adrenoceptor antagonist (dibenamine or prazosin) on $\alpha_1$-adrenoceptor-mediated vasoconstrictions were studied in the endothelium-denuded rat aorta. In these experiments, the mobilization of intracelluier calcium and translocation of extracellular calcium were also studied. To exclude the modulation of endothelium releasing EDRF and EDCF, the endothelium was removed in all rat aortas. Contraction induced by phenylephrine (a full $\alpha_1$-adrenoceptor agonist) was separated into a fast phasic component of the response due to the release of intracellular calcium and a slow tonic one due to the influx of extracellular calcium. Pretreatments with increasing doses of reversible $\alpha_1$-adrenoceptor antagonist prazosin, as well as irreversible $\alpha_1$-adrenoceptor antagonist dibenamine, inhibited the phasic component of phenylephrine-induced contraction more effectively than the tonic one. Pretreatment of dibenamine (0.2 $\mu{M}$) or prazosin (10 nM) to the rat aorta abolished phasic response but remained tonic one about 41% and 51%, respectively. These results suggest that as the efficiency of phenylephrine was progressively reduced by pretreatments with increasing doses of an irreversible or a reversible $\alpha_1$-adrenoceptor antagonist (dibenamine or prazosin), the contraction induced by phenylephrine became progressively more dependent on the influx of extracellular calcium.

  • PDF

Signal Detection of Alpha-adrenoceptor Antagonist using the KIDS-KAERS database (KIDS-KD) (한국 의약품부작용보고원시자료를 활용한 알파차단제의 이상사례 실마리정보 비교 분석)

  • Hyunji Koo;Jun Young Kwon;Jae-Hyuk Choi;Seung Hun You;Sewon Park;Kyeong Hye Jeong;Sun-Young Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.33 no.2
    • /
    • pp.86-96
    • /
    • 2023
  • Background: Using KIDS-KAERS database (KIDS-KD) from 2016 to 2020, the aim is to investigate signals of adverse events of alpha-adrenoceptor antagonists and to present adverse events that are not included in the precautions for use when marketing approval. Methods: This study was conducted by disproportionality analysis. Data mining analysis was performed to detect signals of alpha-adrenoceptor antagonists, such as terazosin, doxazosin, alfuzosin, silodosin, and tamsulosin. The signal was defined by three criteria as proportional reporting ratio (PRR), reporting odds ratio (ROR), and information component (IC). Detected signals were compared with product labeling and the European Medicines Agency-Important Medical Events list. Results: Out of the total number of 408,077 reports for adverse events, 6,750 cases were reported as adverse events of alpha-adrenoceptor antagonists. Dizziness, mouth dryness, hypotension postural, and oedema peripheral are identified as common adverse events of five alpha-adrenoceptor antagonists and are typically listed on drug labels. However, new signals were detected for pneumonia, chronic obstructive airway disease, eye diseases such as glaucoma and cataracts, fracture, and ileus of tamsulosin that were not previously listed on the drug labels in Korea. Conclusions: This study identified signals related to adverse drug reactions of alpha-adrenoceptor antagonists and presented serious adverse events, suggesting new adverse reactions to be aware of when using alpha-adrenoceptor antagonists.

Involvement of α1B-adrenoceptors and Rho kinase in contractions of rat aorta and mouse spleen

  • Hadeel A. Alsufyani;James R. Docherty
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2023
  • α1-adrenoceptors link via the G-protein Gq/G11 to both Ca2+ entry and release from stores, but may also activate Rho kinase, which causes calcium sensitization. This study aimed to identify the subtype(s) of α1-adrenoceptor involved in Rho kinase-mediated responses in both rat aorta and mouse spleen, tissues in which contractions involve multiple subtypes of α1-adrenoceptor. Tissues were contracted with cumulative concentrations of noradrenaline (NA) in 0.5 log unit increments, before and in the presence of an antagonist or vehicle. Contractions produced by NA in rat aorta are entirely α1-adrenoceptor mediated as they are competitively blocked by prazosin. The α1A-adrenoceptor antagonist RS100329 had low potency in rat aorta. The α1D-adrenoceptor antagonist BMY7378 antagonized contractions in rat aorta in a biphasic manner: low concentrations blocking α1D-adrenoceptors and high concentrations blocking α1B-adrenoceptors. The Rho kinase inhibitor fasudil (10 µM) significantly reduced aortic contractions in terms of maximum response, suggesting inhibition of α1B-adrenoceptor mediated responses. In the mouse spleen, a tissue in which all 3 subtypes of α1-adrenoceptor are involved in contractions to NA, fasudil (3 µM) significantly reduced both early and late components to the NA contraction, the early component involving α1B- and α1D-adrenoceptors, and the late component involving α1B- and α1A-adrenoceptors. This suggests that fasudil inhibits α1B-adrenoceptor mediated responses. It is concluded that α1D- and α1B-adrenoceptors interact in rat aorta and α1D-, α1A- and α1B-adrenoceptors interact in the mouse spleen to produce contractions and these interactions suggest that one of the receptors preferentially activates Rho kinase, most likely the α1B-adrenoceptor.

The involvement of protein kinase C in the inhibitory effect of methoxamine on the thyrotropin-induced release of thyroxine in mouse thyroid (Mouse 갑상선에서 thyrotropin에 의한 thyroxine 유리에 미치는 methoxamine의 억제효과에 대한 protein kinase C의 관련)

  • Kim, Se-gon;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.508-517
    • /
    • 1998
  • There is evidence that the sympathetic nervous system exerts a control on thyroid function via an adrenergic innervation of thyroid cells. Although it is clear that the inhibitory effects of catecholamines result from an activation of ${\alpha}_1$-adrenoceptors, the mechanisms involved in ${\alpha}_1$-stimulation are not fully understood. The effects of methoxamine and protein kinase C (PKC) activator on the release of thyroxine ($T_4$) from mouse thyroid were studied to clarify the role of PKC in the regulation of $T_4$ release in vitro. The glands were incubated in the medium, samples of the medium were assayed for $T_4$ by EIA kits. Methoxamine inhibited the TSH-stimulated $T_4$ release. This inhibition was reversed by prazosin, an ${\alpha}_1$-adrenergic antagonist. Futhermore, the inhibitory effect of methoxamine on the $T_4$ release stimulated by TSH was prevented by chloroethylclonidine, an ${\alpha}_{1b}$-adrenoceptor antagonist, but not by WB4101, an ${\alpha}_{1a}$-adrenoceptor antagonist. Also methoxamine inhibited the forskolin-, cAMP- or IBMX-stimulated $T_4$ release. These inhibition were reversed by PKC inhibitors, such as staurosporine and $H_7$. PMA, a PKC activator, completely inhibited the TSH-stimulated $T_4$ release, and its inhibition was reversed by staurosporine and $H_7$, but not by chelerythrine. R59022 (a diacylglycerol kinase inhibitor), like methoxamine, also inhibited the TSH-stimulated $T_4$ release, and its inhibition was also reversed by staurosporine. The present study suggests that methoxamine inhibition of $T_4$ release from mouse thyroid can be induced by activation of the ${\alpha}_{1b}$-adrenoceptors and that it is mediated through the ${\alpha}_1$-adrenoceptor-stimulated PKC formation.

  • PDF

Effects of Clonidine on the Negative Chronotropic Response Induced by Vagal Stimulation in the Rat

  • Hong, Sung-Cheul;Huh, Kyung-Hye;Chung, Joon-Ki;Park, Mi-Sun
    • Archives of Pharmacal Research
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1988
  • The effects of clonidine on the negative chronotropic response induced by stimulation of vagus nerve were studied in the presence of propranolol in reserpinized and anesthetized rats. When the heart rate was decreased by stimulation of the vagus nerve, clonidine significantly inhibited vagally induced heart rate decrease (negative chronotropic response) in dose dependent manner. This inhibitory effect of clonidine was virtually abolished by phentolamine, ${\alpha}_1-\;and\;{\alpha}_2-adrenoceptor$ antagonist, and partially antagonized by prazosin, ${\alpha}_1-adrenoceptor$ antagonist. On the other hand, when the heart rate was decreased by the infusion of bethanechol, a muscarinic parasympathetic stimulant, clonidine had no effect on the bethanechol-induced heart rate decrease. These results suggest that clonidine inhibits vagally induced negative chronotropic response by activation of presynaptic ${\alpha}-adrenoceptors$ located on the parasympathetic cholinergic nerve terminal in the heart and this effect of clonidine is more related to ${\alpha}_2-adrenoceptors$ than ${\alpha}_1-adrenoceptors$.

  • PDF

Inhibitory Effects of B-HT 920 on Gastric Acid Secretion Induced by Vagal Stimulation in Rat

  • Hong, Sung-Cheul;Park, Mi-Sun;Chung, Joon-Ki;Kang, Maeng-Hee;Choi, Su-Kyung;Kim, Myung-Woo
    • Archives of Pharmacal Research
    • /
    • v.12 no.4
    • /
    • pp.243-248
    • /
    • 1989
  • Effects of B-HT 920 on the vagally stimulated gastric acid secretion were studied in anesthetized and gastric fistula rats. When the gastric acid secretion was increased by stimulation of the vagus nerve, B-HT 920 was partially attenuated by prazosin, $\alpha_1-$adrenoceptor antagonist and virtually abolished by yohimbine, $\alpha_2-$adrenoceptor antagonist. On the other hand, when the gastric acid secretion was increased by the infusion of bethanechol, a muscarinic parasympathetic stimulant, B-HT 920 had no effect on the bethanechol-induced gastric acid secretion. These results suggest that B-HT 920 inhibits vagally induced gastric acid secretion by activation of presynaptic $\alpha-$adrenoceptors located on the vagally stimulated pathways in the gastric wall and this effect of B-HT 920 is more related to $\alpha_2-$adrenoceptors than $\alpha_1-$adrenoceptors.

  • PDF

Norepinephrine-Induced Rekindling of Mechanical Allodynia in Sympathectomized Neuropathic Rat (교감신경절제 받은 신경병증성 통증 쥐 모델에서 Norepinephrine에 의해 유도된 기계적 이질통의 Rekindling의 기전)

  • Moon, Dong-Eon
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.318-325
    • /
    • 1996
  • Background: Sympathectomy relieves pain in sympathectically maintained pain, and subcutaneous injection of norepinephrine(NE) can rekindle mechanical allodynia. However, the mechanism of rekindling is not clear. The purpose of this study is to investigate which subtype of $\alpha$-adrenoceptor is involved in NE-induced rekindling of mechanical allodynia in sympathectomized neuropathic rats. Methods: Neuropathic injury was produced by tightly ligating the left L5 and L6 spinal nerves of 36 male Sprague-Dawley rats and bilateral lumbar sympathectomy was done at two weeks postoperatively. Starting at 7 days after sympathectomy, rekindling of mechanical allodynia was induced by NE and clonidine injected into the left paw, which was reversed by pretreatment of phentolamine and idazoxan. Mechanical allocynia was quantified by measuring the frequency of foot lifts to two von Frey filaments applied to the paw. Results: All tested rats displayed well-developed signs of mechanical allodynia at the left paw that were abolished by a bilateral lumbar sympathectomy. Subcutaneous (s.c.) injection of NE (0.05 ${\mu}g$) into the affected paw of sympathectomized neuropathic rats rekindled previous mechanical allodynia. These effects could be mimicked by an ${\alpha}_2$-receptor agonist clonidine, but not by an ${\alpha}_1$-receptor agonist phenylephrine. The NE-induced rekindling of mechanical allodynia was significantly reduced by prior s.c. injection of a mixed $\alpha$-receptor antagonist phentolamine (20${\mu}g$) and ${\alpha}_2$-receptor antagonist idazoxan(20${\mu}g$), but not by a ${\alpha}_1$-receptor antagonist terazosin (20${\mu}g$). The pretreatment of idazoxan produced dose-related inhibition of NE-induced rekindling of mechanical allodynia. The rekindling induced by ${\alpha}_2$-receptor agonist clonidine (5${\mu}g$) was also reversed by prior s.c. injection of ${\alpha}_2$-receptor antagonist idazoxan (20${\mu}g$). Conclusion: Subcutaneous injection of NE into the paw of sympathectomized neuropathic rats rekindles mechanical allodynia, which is reversed by an ${\alpha}_2$-, but not by an ${\alpha}_1$-receptor antagonist. Therefore, rekindling of mechanical allodynia in sympathectomized neuropathic rats is mediated by ${\alpha}_2$-adrenoceptor.

  • PDF

The Role of Central Postsynaptic ${\alpha}_2$-Adrenoceptor on the Immobility Duration in the Forced-swimming Test Mice (새앙쥐 강제수영시 부동자세 시간에 대한 Central postsynaptic ${\alpha}_2$-Adrenoceptor의 역할에 대한 연구)

  • Rhim, Byung-Yong;Kim, Sang-Kon;Lee, Won-Suk;Hong, Ki-Whan
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.90-98
    • /
    • 1985
  • 1) In the study of the forced-swimming test in mice (FSM), the duration of immobility posture was dose-dependently shortened by ${\alpha}_2$-agonists, clonidine and guanabenz. BH-T 933 and oxymetazoline also decreased it . Xylazine rather increased the immobility duration at low dose. 2) ${\alpha}_1$-Agonists, cirazoline, amidephrine and methoxamine, however, showed inconsistent effect on the immobility duration (ID). 3) The decrease in ID by clonidine and guanabenz was antagonized by pretreatment with yohimbine, idazoxan and phentolamine (${\alpha}_2$antagonist), but not by prazosin and corynanthine (${\alpha}_1$-antagonist) .4) The ID in the FSM was shortened dose-dependently by d-amphetamine, and it was also antagonized by yohimbine, but not by prazosin. 5) In the mice pretreated with either ${\alpha}$-methyl-p-tyrosine or reserpine, or with combination of both, the decrease in ID was still evoked by clonidine. 6) When the mice were chronically treated with antidepressants (desipramine and imipramine), or with electroconvulsive shock, clonidine still decreased the ID as it did in the control. 7) These results provided the evidences to hypothesize that the change of the ID in the FSM is closely related with the postsynaptie ${\alpha}_2$-adrenoceptor located on the central noradrenergic neuron body. Furthermore, it is assumed that this escape-directed behavior enhanced by ${\alpha}_2$-adrenoceptor agonist may be the result in some analogy with the incentive of drives which are directed toward the self-preservation.

  • PDF

Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes (기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향)

  • Chang, Sung-eun;Kang, Hyung-sub;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

Pharmacological Evaluation of the Mechanism of ${\alpha}-Adrenoceptor-Mediating$ Sleep in Chickens (${\alpha}$-아드레나린 수용체의 매개에 의한 병아리 수면에 대한 약리학적 고찰)

  • Jeong, S.H.;Sohn, U.D.;Song, C.S.;Hong, K.W.
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.15-21
    • /
    • 1984
  • It was aimed to study the effects of ${\alpha}_2-adrenoceptor$ agonists on the sleeping time in $one{\sim}two-day-old$ chickens. Furthermore, it was also evaluated whether ${\alpha}_1-adrenoceptor$ agonist and antagonist might affect the sleeping in the chickens and discussed in relation with opiate receptor. 1) Guanabenz, clonidine, guanfacine and B-HT 933 decreased the latency of the loss of righting reflex in a dose-dependent manner, but B-HT 920 and oxymetazoline slightly prolonged it. 2) ${\alpha}_2-Adrenoceptor$ agonists produced dose·related increase in sleeping time. The potency was guanabenz>clonidine>oxymetazoline${\geq}$B-HT 933${\geq}$B-HT 920>guanfacine in this order. 3) ${\alpha}_2-Adrenoceptor$ antagonists decreased guanabenz-induced sleeping time in a dose ·dependent manner. The rank order of ${\alpha}_2-adrenoceptor$ antagonists was yohimbine>rauwolscine>piperoxan${\geq}$RX 781094. 4) Sleeping time caused by both ethanol and hexobarbital was not affected by yohimbine in chickens. 5) Methoxamine and phenylephrine showed little significant effect on the guanabenz-induced sleeping time. However, prazosin increased it. Paradoxically, corynanthine rather caused to decrease it. These results suggest that the stimulation of central ${\alpha}_2-adrenoceptor$ mediates sleeping, however it is remained uncertain in the role of central ${\alpha}_1-adrenoceptor$ in chickens. In addition, the one~two-day-old chickens may be considered as a useful, inexpensive and simple experimental model to evaluate the in vivo pharmacological action of the ${\alpha}_2-adrenoceptor$ agonist and antagonist related to sedation.

  • PDF