• Title/Summary/Keyword: alluvial groundwaters

Search Result 9, Processing Time 0.019 seconds

Nitrate Contamination of Alluvial Groundwaters in the Keum River Watershed Area: Source and Behaviors of Nitrate, and Suggestion to Secure Water Supply (금강 권역 충적층 지하수의 질산염 오염: 질산성 질소의 기원과 거동 고찰 및 안전한 용수 공급을 위한 제언)

  • 김경호;윤성택;채기탁;최병영;김순오;김강주;김형수;이철우
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.471-484
    • /
    • 2002
  • Alluviums in the Keum River watershed cover an areal extent of $3,029{\;}\textrm{km}^2$ and contain about 8.1 billion tons of groundwater. However, the waters are severely polluted by nitrate, possibly due to the application of nitrogen fertilizer (>250 N kg/ha) on agricultural land. This paper aims to elucidate the pollution status and behaviors of nitrate in alluvial groundwaters in the Keum River watershed area, based on regional hydrogeochemical study. Most of the collected samples (n = 186) are polluted by nitrate (average = 42.2 mg/L, maximum = 295 mg/L). About 29% of the samples have the nitrate concentrations exceeding Korean Drinking Water Standard (44 mg/L $NO_3$). The distribution of nitrate concentrations in the study area is largely dependant on geochemical environments of alluvial aquifers. In particular, the decrease of redox potential of alluvial groundwaters showed a good correlation with the decreases of nitrate, iron, and manganese concentrations. Thus, the change of redox state in alluvial aquifers, likely reflecting their sedimentary environments, controls both the behavior and fate of nitrogen compounds and their natural attenuation (denitrification) in aquifers. A carbon-rich, silty layer within alluvium strata forms a reducing condition and possesses a buffering capacity on nitrate pollution.

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Hydrogeochemical and geostatistical study of shallow alluvial groundwater in the Youngdeok area

  • Kim, Nam-Jin;Yun, Seong-Taek;Kwon, Man-Jae;Kim, Hyoung-Soo;Kim, Chang-Hoon;Koh, Yong-Kwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • Multi-regression statistical analyses were applied for the water quality data of shallow alluvial ground water (n = 47) collected from the Youngdeok area, in order to quantitatively generalize the natural (non-anthropogenic) causes of regional water quality variation. Seven samples having the high contamination index ( $C_{a}$ > 3) reflect the striong effects by anthropogenic activity. Most of the alluvial groundwaters have acquired their quality primarily due to the dissolution of carbonate minerals. The results of multi-regression analysis show that chlorine is mainly derived from seawater effect. Sulfur isotopic compositions of dissolved sulfur and the S $O_4$/Cl ratio also enable us to discriminate the samples (n = 18) which are affected by atmospheric input of marine aerosol (sea-spray) and also by mixing between freshwater and seawater. Hydrogen and oxygen isotope data of the samples collected lie close to the local meteoric water line obtained from nearby Pohang city but has lower slope (5.45) on the $\delta$D-$^{18}$ O plot, indicating that alluvial groundwater was recharged from infiltrated meteoric water which has undergone some degree of kinetic evaporation. The estimated initial isotopic composition of the recharged water ($\delta$D = -74.8$^{0}$ /$_{00}$, $\delta$$^{18}$ O = -10.8$^{[-1000]}$ /$_{[-1000]}$ ) suggests that the alluvial ground water recharge largely occurs during summer storm events.s.s.

  • PDF

Hydrochemistry of an alluvial aquifer in the Cheonan area: role of the pyrite oxidation on denitrification

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Heo, Chul-Ho;Kim, Hyoung-Soo;Rhee, Chul-Woo;Kim, Kangjoo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.287-290
    • /
    • 2002
  • To examine the denitrification process in an alluvial aquifer in the Cheonan site, hydrological and hydrogeochemical studies were carried out. Elevated levels of NO$_3$ (maximum 77.6 mg/L) were observed in shallow groundwaters of the area, as a result of poultry and agricultural activity. However, the nitrate concentrations were found to be consistently attenuated down to very low levels (<1.0 mg/L). The abrupt removal of nitrate coincided with the pattern of redox change and indicated that denitrification is the most plausible process. The hydrochemistry and mass balance approach using geochemical modeling (phreeqc 2.0) and redox chemistry indicated that chemo-autotrophic denitrification via pyrite oxidation is the key Process to control the nitrate attenuation in the study area.

  • PDF

Geochemical Investigation on Arsenic Contamination in the Alluvial Ground-water of Mankyeong River Watershed (만경강유역 충적대수층 지하수의 비소오염현황 및 지구화학적 특성)

  • Moon, Jeong-Tae;Kim, Kang-Joo;Kim, Seok-Hwi;Jeong, Cheon-Sung;Hwang, Gab-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.673-683
    • /
    • 2008
  • As-rich alluvial groundwaters occurring in the agricultural area of Mankyeong River watershed were geochemically studied. 15 out of 29 investigated wells (52%) showed As levels exceeding the WHO drinking water standard ($10{\mu}g/L$). Their chemistry is characterized by low Eh levels, low $NO_3$ and $SO_4$ concentrations, and high pH, alkalinity, Fe, $NH_4$, and $PO_4$ levels. This suggests that arsenic is enriched by the reductive dissolution of As-bearing Fe-/Mn-(hydro)oxides, the commonest process in Bangladesh and West Bengal of India, of which groundwaters are severely contaminated by As. It was also revealed that As concentrations in the area are strongly regulated by the presence of agrochemicals such as $NO_3$ and $SO_4$.

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.

Evaluation of geochemical processes affecting groundwater chemistry in Namwon, Korea

  • Kim, Kang-Joo;Natarajan Rajmohan;Kim, Hyung-Jung;Kim, Suk-Hwi;Hwang, Gab-Soo;Cho, Min-Joe;Lee, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.334-337
    • /
    • 2004
  • Groundwater chemistry in Namwon area, Korea, was investigated to understand the contribution of geochemical processes on groundwater chemistry. For this study, a total of 279 groundwater samples were collected from 93 wells distributed over the study area. Higher concentrations of major ions are generally encountered in the shallow alluvial wells, suggesting that these chemicals are originated from the surface contamination sources. Mass balance analysis based on reaction stoichiometry reveals that the water chemistry is regulated by three major chemical processes: weathering of silicate/ carbonate minerals, input of C1/SO$_4$ salts, and nitrate generating processes. The results show that mineral weathering is the most dominating factor regulating the groundwater chemistry. However, the groundwaters with the higher salt concentration indicate the larger mineral weathering effect, suggesting that some part of the mineral weathering effect is also associated with the anthropogenic activities such as limes applied to the cultivated lands, carbonates (CaCO$_3$) in the cement materials.

  • PDF

Removal of Dissolved Iron in Groundwater by Injection-and-Pumping Technique: Application of Reactive Transport Modeling (주입-양수 기법을 활용한 지하수 내 용존 철 제거: 반응성용질이동모델링의 적용)

  • Choi, Byoung-Young;Yun, Seong-Taek;Kim, Kyoung-Ho;Koh, Yong-Kwon;Kim, Kang-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.29-37
    • /
    • 2007
  • Shallow alluvial groundwaters in Korea of tell exceed the Korean Drinking Water Standard for dissolved iron (0.3 mg/L), which is one of the important water quality problems, especially in the use of bank infiltration technique. Using the reactive transport modeling, in this study we simulated the effectiveness of injection-and-pumping technique to remove dissolved iron in groundwater. The results of simulation showed that pumping of groundwater after injection of oxygenated water into aquifers is very effective to acquire the permissible water quality level. Groundwater withdrawal up to several times of irjected water in volume can be applicable to yield drinkable water. Potential problems such as clogging and permeability lowering due to in-situ precipitation of iron hydroxides may be insignificant. We also discuss on the mechanism and spatial extent of iron removal in aquifer.

Characteristics of Natural Arsenic Contamination in Groundwater and Its Occurrences (자연적 지하수 비소오염의 국내외 산출특성)

  • Ahn Joo Sung;Ko Kyung-Seok;Lee Jin-Soo;Kim Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.547-561
    • /
    • 2005
  • General characteristics of groundwater contamination by As were reviewed with several recent researches, and its occurrence in groundwater of Korea was investigated based on a ffw previous studies and a groundwater quality survey in Nonsan and Geumsan areas. In Bangladesh, which has been known as the most serious arsenic calamity country, about $28\%$ of the shallow groundwaters exceeded the Bangladesh drinking water standard, $50{\mu}g/L$, and it was estimated that about 28 million people were exposed to concentrations greater than the standard. Groundwater was characterized by circum-neutral pH with a moderate to strong reducing conditions. Low concentrations of $SO_4^{2-}$ and $NO_3^-$, and high contents of dissolved organic carbon (DOC) and $NH_4^+$ were typical chemical characteristics. Total As concentrations were enriched in the Holocene alluvial aquifers with a dominance of As(III) species. It was generally agreed that reductive dissolution of Fe oxyhydroxides was the main mechanism for the release of As into groundwater coupling with the presence of organic matters and microbial activities as principal factors. A new model has also been suggested to explain how arsenic can naturally contaminate groundwaters far from the ultimate source with transport of As by active tectonic uplift and glaciatiion during Pleistocene, chemical weathering and deposition, and microbial reaction processes. In Korea, it has not been reported to be so serious As contamination, and from the national groundwater quality monitoring survey, only about $1\%$ of grounwaters have concentrations higher than $10{\mu}g/:L.$ However, it was revealed that $19.3\%$ of mineral waters, and $7\%$ of tube-well waters from Nonsan and Geumsan areas contained As concentrations above $10{\mu}g/:L.$. Also, percentages exceeding this value during detailed groundwater quality surveys were $36\%\;and\;22\%$ from Jeonnam and Ulsan areas, respectively, indicating As enrichment possibly by geological factors and local mineralization. Further systematic researches need to proceed in areas potential to As contamination such as mineralized, metasedimentary rock-based, alluvial, and acid sulfate soil areas. Prior to that, it is required to understand various geochemical and microbial processes, and groundwater flow characteristics affecting the behavior of As.