• Title/Summary/Keyword: alloying

Search Result 1,174, Processing Time 0.024 seconds

Jangdo(Small Ornamental Knives) manufacturing process and restoration research using Odong Inlay application (오동상감(烏銅象嵌)기법을 활용한 장도(粧刀)의 제작기술 및 복원연구)

  • Yun, Yong Hyun;Cho, Nam Chul;Jeong, Yeong Sang;Jang, Chu Nam
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.172-189
    • /
    • 2016
  • In this research, literature research on the Odong material, mixture ratio, casting method and casting facility was conducted on contemporary documents, such as Cheongong Geamul. Also, a long sword was produced using the Odong inlay technique. The sword reproduction steps were as follows; Odong alloying, silver soldering alloying, Odong plate and Silver plate production, hilt and sheath production, metal frame and decorative elements, such as a Dugup (metal frame), production, Odong inlay assembly and final assembly. For the Odong alloy production, the mixture ratio of the true Odong, which has copper and gold ratio of 20:1, was used. This is traditional ratio for high quality product according to $17^{th}$ century metallurgy instruction manual. The silver soldering alloy was produced with silver and brass(Cu 7 : Zn 3) ratio of 5:1 for inlay purpose and 5:2 ratio for simple welding purpose. The true Odong alloy laminated with silver plate was used to produce hilt and sheath. The alloy went through annealing and forging steps to make it into 0.6 mm thick plate and its backing layer, which is a silver plate, had the matching thickness. After the two plates were adhered, the laminated plate went through annealing, forging, engraving, silver inlaying, shaping, silver welding, finishing and polishing steps. During the Odong colouring process, its red surface turns black by induced corrosion and different hues can be achieved depending on its quality. To accomplish the silver inlay Odong techniques, a Hanji saturated with thirty day old urine is wrapped around a hilt and sheath material, then it is left at warm room temperature for two to three hours. The Odong's surface will turn black when silver inlay remains unchanged. Various scientific analysis were conducted to study composition of recreated Odong panel, silver soldering, silver plate and the colouring agent on Odong's surface. The recreated Odong had average out at Cu 95.57 wt% Au 4.16wt% and Cu 98.04 wt% Au 1.95wt%, when documented ratio in the old record is Cu 95wt% and Au 5wt%. The recreated Odong was prone to surface breakage during manufacturing process unlike material made with composition ratio written in the old record. On the silver plate of the silver and Odong laminate, 100wt% Ag was detected and between the two layers Cu, Ag and Au were detected. This proves that the adhesion between the two layers was successfully achieved. The silver soldering had varied composition of Ag depending on the location. This shows uneven composition of the silver welding. A large quantities of S, that was not initially present, was detected on the surface of the black Odong. This indicates that presence of S has influence on Odong colour. Additional study on the chromaticity, additional chemical compounds and its restoration are needed for the further understanding of the origin of Odong colour. The result of Odong alloy testing and recreation, Odong silver inlay long sword production, scientific analysis of the Odong black colouring agent will form an important foundation of knowledge for conservation of Odong artifact.

Effects of the Precipitation of Carbides and Nitrides on the Textures in Extra Low Carbon Steel Sheets containing B, Nb and Ti(l) (B,Nb 및 Ti 를 함유한 극저탄소강에서 탄화물 및 질화물의 석출이 집합조직에 미치는 영향(I)-집합조직과 기계적 성질-)

  • Lee, Jong-Mu;Yoon, Kuk-Hoon;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Excellent deep drawability and strain aging rsistance are obtained by the addition of alloying elements such as Ti and Nb which can form carbide and nitride easily into Al killed extra low carbon steel. Recrystallization textures and mechanical properties of the three different extra low carbon steels with B containing Nb only, Ti only, and both Nb and Ti, respectively, along with have been compared. Inverse pole figure shows that (100) and (111) texture intensities of Nb containing steel changed a lot during the annealing treatment and the degree of texture-structural change in the steel containing both Nb and Ti is about the same as that in the Ti-containing 5teel. After annealing the pole figure shows that the {Ill} < 110 > and {112} < 110> textures are the strongest in the cold rolled state and the annealed state, respectively. However, there is little difference in texture structure among the three kinds of steels. There is a tendency that the steel containing both Nb and Ti the grain size of which is the smallest is the highest in hardness. Nb-containing steel is the next and Ti -containing steel is the last in hardness.

  • PDF

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Effect of Atmospheric Hydrogen Pressure on Mg2NiHx synthesis (Mg2NiHx 수소저장합금 합성에 미치는 분위기 수소압의 영향)

  • Hong, Tae Whan;Lim, Jae Won;Kim, Shae Kwang;Kim, Young Jig;Park, Hyun Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.27-40
    • /
    • 1999
  • By hydrogen induced planetary ball milling process, $Mg_2NiH_x$ hydrogen absorbing materials were successfully alloyed mechanically at room temperature, using pure Mg and Ni chips. The Mg & Ni chips were mixed by 45:55 weight ratio and Mechanical Alloying(M.A.) was carried out : the hydrogen pressure induced in the jar was varied from 1 to 20 bars and the M.A. times were 24 and 48 hours. The XRD results revealed that the homogeneous $Mg_2NiH_x$ was incresed with the hydrogen pressure increasing, and that $MgH_x$ was detected by unalloyed Ni chips. The shape and size of the mechanically alloyed particles didn't depend on the induced hydrogen pressure. The results of TGA showed that the hydrogen quantities of $Mg_2NiH_x$ has 1.1~3.9 wt%.

  • PDF

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effects of 3rd Element Additions on the Oxidation Resistance of TiAi Intermetallics (합금원소 첨가가 TiAI계의 내산화성에 미치는 영향)

  • Kim, Bong-Gu;Hwang, Seong-Sik;Yang, Myeong-Seung;Kim, Gil-Mu;Kim, Jong-Jip
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.669-680
    • /
    • 1994
  • Oxidation behaviour of TiAl intermetallic compounds with the addition of Cr, V, Si, Mo, or Nb was investigated at 900~$1100^{\circ}C$ under the atmospheric environment. The reaction products were examined by XRD, SEM equipped with WDX. The weight gain by continuous oxidation increased with the addition of Cr or V, but there was less weight gain when Mo, Si or Nb was added individually. he oxidation rate of Cr- or V-added TiAl was always larger than that of TiAI. However, oxidation rate of Si-, Mo- or Nb-added TiAl was almost same or smaller than that of TiAI. Thus, it is concluded that the addition of Cr or V did not improve the oxidation resistance, whereas the addition of Si, Mo or Nb improved the oxidation resistance. Oxides formed on TiAl with Mo, Si, and Nb were found to be more protective, resulting from the decrease in diffusion rate of the alloying elements and oxygen. Nb strengthened the tendency to form $AI_{2}O_{3}$ in the early stage of oxidation, due to the continuous $AI_{2}O_{3}$ layer formation and dense $Tio_{2}+AI_{2}O_{3}$ layer. According to the Pt-marker test of TiAI- 5wt%Nb, oxygen diffused mainly inward while oxides were formed on the substrate surface. Upon thermal cyclic oxidation at $900^{\circ}C$, it is shown that the addition of Cr or Nb improved the adherence of oxide scale to the substrate.

  • PDF

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Overview of Zirconium Production and Recycling Technology (지르코늄의 제조(製造)와 재활용기술(再活用技術))

  • Park, Kyoung-Tae;Kim, Seung-Hyun;Hong, Soon-Ik;Choi, Mi-Sun;Cho, Nam-Chan;Yoo, Hwan-Jun;Lee, Jong-Hyeon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.18-30
    • /
    • 2012
  • Zirconium is one of the most important material used as cladding of fuel rods in nuclear reactors because of its high dimensional stability, good corrosion resistance and especially low neutron-absorbing cross section. However, Hf free nuclear grade Zr sponge is commercially produced by only three countries including USA, France and Russia. So, Zr has been thoroughly managed as a national strategic material in Korea. Most of the zirconium is used for Korean nuclear industry as nuclear fuel cladding materials manufactured from Hf free Zr alloy raw material. Also, there are some other applications such as alloying element and detonator. In this review, zirconium production and recycling technologies have been reviewed and current industrial status was also analyzed. And recent achievements in innovative reduction technologies such as electrolytic reduction process and molten oxide electrolysis were also introduced.

Microstructural Realization of SD400 Rebar by Developing Tempcore Simulation Apparatus (템프코어 냉각모사 장치 개발을 통한 SD400 철근 미세조직 구현)

  • Park, Chun Su;Yi, Hyang Jun;Bae, Seh Wook;Kim, Gil-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.543-547
    • /
    • 2015
  • The cooling process referred to as Tempcore has been applied to produce a high-strength rebar. Excellent rebar with strength and weldability can be manufactured from mild steel without the addition of alloying elements by using the Tempcore process. However, there are limitations to evaluating the effect of various chemical compositions and cooling conditions within a site facility. In this study, we developed an apparatus to simulate the Tempcore process and obtained microstructures with a hardened surface layer, an intermediate region and a soft inner core. The experimental apparatus has been equipped with a cooler set that is the same as the site facility and consists of a pump line that supplies pressure of 12-13 bar and flow rate of up to $50m^3/h$. In accordance with the simulation result of steel grade SD400 that requires more than 400 MPa of yield strength, both the hardened area ratio and the hardness with respect to each cooling depth were found to agree well with the product.