• Title/Summary/Keyword: alloyed steel

Search Result 122, Processing Time 0.025 seconds

Influence of Sintering Parameters on the Mechanical Performance of PM Steels Pre-alloyed with Chromium

  • Bergman, Ola;Lindqvist, Bjorn;Bengtsson, Sven
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.280-281
    • /
    • 2006
  • Powder grades pre-alloyed with 1.5-3 wt% chromium can be successfully sintered at the conventional temperature $1120^{\circ}C$ although well-monitored sintering atmospheres are required to avoid oxidation. Mechanical properties of the Cr-alloyed PM grades are enhanced by a higher sintering temperature in the range $1120-1250^{\circ}C$, due to positive effects from pore rounding, increased density and more effective oxide reduction. Astaloy CrM (Fe-3 wt% Cr-0.5 wt% Mo) with 0.6 wt% graphite added obtains an ultimate tensile strength of 1470 MPa and an impact strength of 31 J at density $7.1\;g/cm^3$, after sintering at $1250^{\circ}C$ followed by cooling at $2.5^{\circ}C/s$ and tempering.

  • PDF

A Study on the Characteristics of Wire-Cut Electric Discharge Machining of Alloyed Tool Steel and Tungsten Carbide (와이어컷 방전에 의한 합금공구강과 초경합금의 가공특성)

  • 이재명;허성중;김원일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1996
  • From the experimental study of wire-cut Electric Discharge Machining of alloyed tool steel and tungsten carbide, the characteristics such as cutting speed, surface roughness has been observed and evaluated for various conditions. Cutting speed is improved as peak discharge current and wire tension become increased, and gap voltage and spark cycle decreased. Surface roughness can be better when peak discharge current and gap voltage become smaller, or spark cycle and wire tension become larger. Secondary cut is recommended to obtain high precision and good quality.

  • PDF

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF

Determination of Optimal Austenitizing Temperature in High-Alloyed Tool Steels (고합금 공구강의 최적 오스테나이트 처리 온도 결정)

  • Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.156-163
    • /
    • 2017
  • In the present study, we investigated the optimal austenitizing temperature of high-alloyed tool steels from an industrial point of view. Austenitizing temperatures for manufacturing 25 commercial tool steels were surveyed with their alloy compositions. The relationship between the austenitizing temperatures and the critical equilibrium temperatures by thermodynamic-based calculation was analyzed and a correlation was found. Based on the austenitizing temperatures of 25 commercial tool steels and the thermodynamic calculation results, we proposed a simple equation to predict an optimal austenitizing temperature to achieve superior mechanical properties of high-alloyed tool steels. The applicability of the proposed equation was experimentally validated with a new developed tool steel.

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

Evolution on Microstructures and Tensile Properties of 10Cr-1Mo ODS Steel with Different Lengths of Mechanical Alloying Process Times (10Cr-1Mo 산화물 분산강화 강의 미세조직과 인장특성에 미치는 기계적 합금화 공정시간의 영향)

  • Noh, Sanghoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.375-380
    • /
    • 2021
  • In this study, we investigate the effect of the duration of mechanical alloying on the microstructures and mechanical properties of ODS ferritic/martensitic steel. The Fe(bal.)-10Cr-1Mo pre-alloyed powder and Y2O3 powder are mechanically alloyed for the different mechanical alloying duration (0 to 40 h) and then constantly fabricated using a uniaxial hot pressing process. Upon increasing the mechanical alloying time, the average powder diameter and crystallite size increased dramatically. In the initial stages within 5 h of mechanical alloying, inhomogeneous grain morphology is observed along with coarsened carbide and oxide distributions; thus, precipitate phases are temporarily observed between the two powders because of insufficient collision energy to get fragmented. After 40 h of the MA process, however, fine martensitic grains and uniformly distributed oxide particles are observed. This led to a favorable tensile strength and elongation at room temperature and 650℃.

Surface Hardening of Tool Steels Using Laser Beam (레이저 빔을 이용한 공구강의 표면 경화)

  • Nam, K.S.;Lee, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • This work was to investigate suitable tool steels for hardening using laser beam, and was studied on carbon tool steels and alloyed tool steels such as STC3 steel, STS3 steel, STD11 steel and SKH51 steel. The surface hardness of HV700-1000 and the hardening depth of 2-2.5mm were obtained on STC3 steel and STS3 steel, and HV800-1000 was obtained on SKH51 steel, but STD11 steel was not enough. Except STD11 steel, all steels used in this study can be hardened by laser quenching or laser rapid melting.

  • PDF

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.