• 제목/요약/키워드: allowable bending strength

검색결과 57건 처리시간 0.021초

인벌류트 스퍼기어 치형 강도에 관한 연구 (A Study the Development of Involute Spur Gears Profiles Strength)

  • 조성철
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.269-276
    • /
    • 2006
  • Strength Design method for involute spur gears is developed. The developed gear strength design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is matrix form which is developed from this study. Design variables are transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Gear design method developed this study can be apply to the gears of plants, machine tools, automobiles.

  • PDF

벨로우즈형 신축관이음의 휨각도 예측 및 이를 이용한 배관계의 안정성 해석 (Prediction of Bending Angle of Bellows and Stability Analysis of Pipeline Using the Prediction)

  • 손인수
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.827-833
    • /
    • 2022
  • In this study, the prediction of the bending angle for the 350 A bellows-type expansion joints and the structural stability according to the load were determined. The stability of the 2km piping system was predicted by applying the allowable bending angle of the expansion pipe joint obtained from the analysis. The maximum bending angle was calculated through bending analysis of the bellows-type expansion joints, and the maximum bending angle by numerical calculation was about 1.8°, and the maximum bending angle of the bellows obtained by comparing the allowable strength of the material was about 0. 22°. This angle was very stable compared to the allowable bending angle (3°) of the expansion pipe joint regulation. By applying the maximum bending angle, the allowable maximum deflection of the 2 km pipe was about 3.8 m. When the seismic load was considered using regression analysis, the maximum deflection of the 2km pipe was about 142.3mm, and it was confirmed that the bellows-type expansion joints and the deflection were stable compared to the allowable maximum deflection of the pipe system. These research results are expected to present design and analysis guidelines for the construction of piping and the development of bellows systems, and to be used as basic data for systematic research.

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

산업용 인벌류트 치차 설계를 위한 자동화 기술에 관한 연구 (A Study on Automatic Technology for a industrial Industrial Involute Gears Design)

  • 조성철;변문현
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.39-46
    • /
    • 1997
  • This study describes a computer aided design system on involute gear for power transmition. Input data for gear design are pressure angle $20^{\circ}$, transmitted power, gear volume, gear ratio, addendum ratio of rack, dedendum ratio of rack, edge radius of rack, allowable contact stress and allowable bending stress etc. Bending strength contact strength and scoring are considered as the design constraints. Method of optimization developed this study. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth.

  • PDF

Study of the Distribution Properties and LRFD Code Conversion in Japanese Larch

  • Park, Chun-Young;Pang, Sung-Jun;Park, Ju-Sang;Kim, Kwang-Mo;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.94-100
    • /
    • 2010
  • This study was performed to develop an LRFD (Load Resistance Factored Design) Code for Domestic Larch. To accomplish his, we evaluated bending, compression, tension and shear strength. The results of the strength evaluation were utilized to verify the distribution and code conversion. For bending, tension and compressive strength, the Weibull distribution was well-fitted, but for shear strength we observed a normal distribution. For evaluating the bending and compressive strength, a full-sized specimen was used. A small clear specimen was used to test tension and shear strength. Compressive strength in particular was found to be affected by tight knots, although there was little difference between grades. In the code conversion, the design value of the LRFD was larger than the existing allowable stress value in the Korean Building Code. However, the allowable stress in this study was about two times higher than the value listed in the Korean Building Code. This result induced the difference between the soft and hard conversions. For greater reliability, the accumulation of additional data is necessary and further studies should be performed

Bending Strength of Korean Softwood Species for 120×180 mm Structural Members

  • Pang, Sung-Jun;Park, Joo-Saeng;Hwang, Kweon-Hwan;Jeong, Gi-Young;Park, Moon-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.444-450
    • /
    • 2011
  • The goal of this study is to investigate bending properties of domestic timber. Three representative structural timber from Larix kaempferi, Pinus koraiensis, and Pinus densiflora, in the northeastern South Korea were selected. Visual grading for the timber was conducted based on KFRI notification 2009-01 and the bending strength for the timber was evaluated based on ASTM D 198 bending. The high percentage of grade 1 and 2 for Larix kaempferi shows that the KFRI notification was optimized for this species. The bending strength distributions from Pinus koraiensis and Pinus densiflora were very similar. It could be possible to specify the allowable bending properties of these two Specification using a united species group similar to spruce-pine-fir. Lastly, the bending strength of $120{\times}180mm$ structural members was higher than both existing values in KBC 2009 and design values for timber of imported species described in the NDS. Thus, 120 mm thick domestic softwoods could replace the commercial imported species and the KBC should be modified to provide design values for both timber and dimensional lumber, respectively, like NDS.

베벨기어 설계 시스템 개발에 관한 연구 (A Study the Development of Bevel Gears Design System)

  • 조성철
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2002년도 추계 학술논문발표회 논문집
    • /
    • pp.263-269
    • /
    • 2002
  • Design method for Involute bevel gears is developed. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is MS(matrix search) which is developed from this study. Design variables are pressure angle 20, transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Design method developed this study can bd applide to the plane, machine tools, automobiles.

  • PDF

인벌류트 베벨기어 설계 기술에 관한 연구 (A Study on Technology for Involute Bevel Gear Design)

  • 조성철
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2003
  • Design method for involute bevel gears is developed. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is MS(matrix search) which is developed from this study. Design variables are pressure angle 20., transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress. etc. Gears design method developed this study can be applied to the plane, helicopter, printer, machine tools.

감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가 (Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load)

  • 안석환;남기우;김선진;김진환;김현수;도재윤
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

구부림 피로에 의한 연선의 반단선 특성 해석 (Analysis on the Characteristics of the Stranded Wire Disconnected by Bending Stress)

  • 송길목;최충석;김동우;곽희로
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.464-467
    • /
    • 2003
  • In this paper, we analyzed on the characteristics of the stranded wire disconnected by bending stress. The stranded wire that used in the experiment are PVC insulated flexible cords(VCTFK) of $0.75mm^2,\;1.25mm^2,\;and\;2.0mm^2$. They are used to connect the load in low voltage. The stranded wires disconnected by bending stress were magnified with optical microscope. Using X-ray, the disconnected wire were photographed. we compared mechanical characteristics of the stranded wire between disconnected tendency and allowable current. On the mechanical strength of vinyl captyre ellipse type cords under bending stress, $1.25mm^2$ VCTFK was the strongest of them. When it was bended $826.3{\pm}7\;times$, it appeared the disconnected tendency that element wires of $1.25mm^2$ VCTFK are more about 1.67 times than element wires of $0.75mm^2$ VCTFK. In mechanical strength, $1.25mm^2$ VCTFK is higher about 1.7 times than $0.75mm^2$ VCTFK. Therefore, we found out that mechanical strength will be higher, if element wire is a lot. In comparison with bending stress, $1.25mm^2$ VCTFK is the strongest among samples, and then it is the most useful in wires of movable type.

  • PDF