• Title/Summary/Keyword: alkyl benzene

Search Result 66, Processing Time 0.025 seconds

New Semiconducting Multi-branched Conjugated Molecules Bearing 3,4-Ethylene-dioxythiophene-based Thiophenyl Moieties for Organic Field Effect Transistor

  • Kim, Dae-Chul;Lee, Tae-Wan;Lee, Jung-Eun;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon;Han, Yoon-Deok;Cho, Mi-Yeon;Joo, Jin-Soo
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.491-498
    • /
    • 2009
  • New $\pi$-conjugated multi-branched molecules were synthesized through the Homer-Emmons reaction using alkyl-substituted, 3,4-ethylenedioxythiophene-based, thiophenyl aldehydes and octaethyl benzene-l,2,4,5-tetrayltetrakis(methylene) tetraphosphonate as the core unit; these molecules have all been fully characterized. The two multi-branched conjugated molecules exhibited excellent solubility in common organic solvents and good self-film forming properties. The semiconducting properties of these multi-branched molecules were also evaluated in organic field-effect transistors (OFET). With octyltrichlorosilane (OTS) treatment of the surface of the $SiO_2$ gate insulator, two of the crystalline conjugated molecules, 7 and 8, exhibited carrier mobilities as high as $2.4({\pm}0.5){\times}10^{-3}$ and $1.3({\pm}0.5){\times}10^{-3}cm^2V^{-1}s^{-1}$, respectively. The mobility enhancement of OFET by light irradiation ($\lambda$ = 436 nm) supported the promising photo-controlled switching behavior for the drain current of the device.

Adsorption and Degradation of Alkylbenzenesulfonate by Soils (Alkylbenzenesulfonate의 토양(土壤)에 의한 흡착(吸着)과 분해(分解))

  • Ha, Sang-Keon;Joo, Jin-Ho;Um, Myung-Ho;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.169-175
    • /
    • 1988
  • A laboratory experiment was conducted to investigate the effects of pH, organic matters and anion on the adsorption and degradation of surfactant by different soils; Anmi series (limestone region), Gangseo series (alluvial soil). For this study, Alkyl Benzene Sulfonate (ABS ; Sodium Dodecylbenzenesulfonate) was used as a surfactant. The results were as follows: 1. Adsorption of ABS by soils was correlated positively with the equilibrium concentration of ABS in a soil suspension. (Anmi seris : r=0.9855, Gangseo series : r=0.9931). 2. Adsorption rate of ABS by soils was about 70% of the treated concentration ($600{\mu}g$ ABS/g soil) in a range of pH 4 to pH 5, and about 20% for pH 8. 3. Addition of electrolytes increased ABS adsorption by soils in a soil suspension; the higher concentration, the higher adsorption. But the influence among electrolytes was not significant. 4. Adsorption of ABS by soils was not affected by soil organic matter content in this experiment. 5. Degradation rate of ABS in a soil suspension was about 85% at $30^{\circ}C$, and about 10 to 15% at $10^{\circ}C$. Addition of sewage accelerated the degradation rate regardless of temperature and reached about 85% in a week.

  • PDF

Risk assessment for water quality of a river using QUAL2E model (QUAL2E 모형을 이용한 하천수질의 위해성평가)

  • Kim, Jungwook;Kim, Yonsoo;Kang, Narae;Jung, Jaewon;Kim, Soojun;Noh, Huiseong;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.441-450
    • /
    • 2014
  • In this study, we consider ability of self-purification for a rational water quality management. And we assess the risk of Alkyl Benzene Sulfonic acid sodium salt(ABS) of harmful ingredients in Anseong Cheon watershed using QUAL2E model. The observations and simulated results were fitted well for BOD and ABS, but even though the trend of DO concentration change was well represented, the error between observation and simulation values was existed. We assessed the Risk assessment by calculating Risk quotient(RQ) by Predicted Exposure Concentration(PEC) and Predicted No-Effect Concentration(PNEC). Results of the impact of ABS on the self-purification of the river were Anseongcheon[0.0003(Bressan), 0.06(Criteria of Ministry of environment)], Jinwicheon[0.0002(Bressan), 0.04(Criteria of Ministry of environment). And result of the impact of ABS on the Aquatic ecosystem of the river were Anseongcheon[0.0667(Bressan), 0.005(Criteria of Ministry of environment)], Jinwicheon[0.1(Bressan), 0.0075(Criteria of Ministry of environment). All of these results were smaller than the 1.0 which is the reference value suggested by Norification No.30 of the National Institute of Environment Research. So, ABS did not affect a self-purification and aquatic ecosystem of the river. The method suggested in the study is a simple one and can provide more information for harmful ingredients than criteria of Ministry of environment.

Relation of Structural Features of Dinuclear Constrained Geometry Catalysts with Copolymerization Properties of Ethylene and 1-Hexene (이핵 CGC의 구조적인 특성과 에틸렌/1-헥센의 공중합 거동과의 관계)

  • Cao, Phan Thuy My;Nguyen, Thi Le Nhon;Nguyen, Thi Le Thanh;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Effects of structural features of 4 dinuclear constrained geometry catalysts having paraxylene derivative bridge (DCGC) on copolymerization of ethylene and 1-hexene were investigated. The bridges of three catalysts have para-xylene backbone with a different substituent at benzene ring. The substituents were hydrogen (Catalyst 1), isopropyl (Catalyst 2), n-hexyl (Catalyst 3) and 1-octyl (Catalyst 4). It was found that Catalyst 1 having hydrogen as a substituent exhibited the greatest activity among the four dinuclear CGCs. On the other hand, Catalyst 2 containing isopropyl as a substituent showed the smallest activity. Very interestingly, Catalyst 2 was able to produce about 6 times higher molecular weight polymer than Catalyst 3 and 4. Catalyst 3 and 4 having a long alkyl chain substituent revealed the biggest comonomer response to generate polyethylene copolymer containing more than 40% 1-hexene contents. These results suggest that the control of the substituent of para-xylene bridge of dinuclear CGC can provide a proper method to adjust the microstructure of polyethylene copolymers.

Studies on the Stability of Fenitrothion Formulations (Fenitrothion (MEP) 제제(製劑)의 화학적(化學的) 안정성(安定性)에 관(關)한 연구(硏究))

  • Park, Seung Heui
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.381-398
    • /
    • 1975
  • Present work was executed to evaluate effects of adjuvants. stabilizers. moisture. pH and heavy metals on the stability of Fenitrothion in the emulsifiable concentrate. In addition, susceptibility ' of Fenitrothion in various formulations, to UV-irradiation has been also examined. The results are summarized as follows; 1. Xylene and benzene were found to be satisfactory solvents for Fenitrothion emulsifiable concentrate. As expected, polar sol vents such as aliphatic alcohols considerably reduced stability of the pesticides. 2. Of the two non-ionic emulsifiers, an alkyl aryl type Sorpol-1200, in contrast to sorbitan type Tweens, substantially reduced decomposition of Fenitrothion in the emulsifiable concentrates. Moisture and pH of emulsifiers. in the ranges studied. affected little if any. on the stabi ity of the Fenitrothion during the experiment periods. 3. Maleic anhydride, p-toluene sulfonic acid, sulfosalicylic acid, maleic anhydride-sulfosalicylic acid reduced decomposition of Fenitrothion in the emulsifiable concentrate. Addition of organic acids, however, increased liability of Fenitrothion in the emulsifiable concentrate. 4. Presence of either zinc or copper metals in the emulsifiable concentrate containing Tween-80 as a emulsifier, reduced stability of the Fenitrothion. 5. UV-irradiation, as expected, brought decomposition of Fenitrothion. The liability of Fenitrothion formulations decreased in the order, wettable powder ${\gg}$ dust > emulsifiable concentrate.

  • PDF

A Study on Safety of Ready-to-eat Compound Foods with a By-products of Meat as the Base (식육부산물을 주재료로한 복합즉석조리식품의 안전성 연구)

  • Song, Sung-Min;Lee, Gil-Bong;Kim, Myeong-Hee;Jeung, Ji-Yeol;Hwang, Won-Mu;Yun, Ga-Ri;Kim, Sun-Hoi;Go, Jong-Myeung;Kim, Yong-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • This research was performed to investigate chemical and microbiological hazards of Ready-to-eat(RTE) compound foods which uses the by-product of meat. For this experiment, 51 samples of RTE compound foods in by-product of meat distributed in Incheon from January to December 2006 were tested. The contents of heavy metals in the main ingredient of RTE compound foods were in the range of $0.073{\sim}0.112ppm$ for lead (Pb), $0.006{\sim}0.013ppm$ for cadmium (Cd) and $0.746{\sim}0.978ppb$ for mercury (Hg). The concentrations of residual ABS(alkyl benzene sulfate) in the small intestine which is a main ingredient of Gopchang-casserole were $$0.8ppm{\sim}57.6ppm$ (Ave. 10.3ppm). Staphylococcus aureus was isolated from 11 samples (21.6%) among 51 main ingredients of RTE compound foods. The isolation rates of Salmonella spp. and Clostridium perfringens were 2.0% (1/51) and 5.9% (2/51), respectively. By types of main ingredient, the small intestine was showed the highest isolation rate as 35.3% (12/34), ham and the sausage which are main ingredients of the Budae-pot stew were 25% (2/8) and other meat products were 20% (1/5). Food poisoning bacteria was not found in the blood of pig which is a main ingredient of the Sunji-pot stew. 28.4% (27/95) of sauce included in each RTE compound foods were coliform bacteria positive. Pesticide residues were found in four of 45 vegetables which are the additional ingredient of RTE compound foods. The concentrations of pesticide were chlorothalonil 2.8 ppm, EPN 10.3 ppm, chlorpyrifos 0.4ppm and indoxacarb 0.7ppm. In 33 bean sprout samples, captan and carbendazim were not detected.