• Title/Summary/Keyword: alkaline serine protease

Search Result 59, Processing Time 0.021 seconds

Purification and Characterization of Fibrinolytic Enzyme from Lepista nuda (민자주방망이버섯으로부터 혈전용해효소의 정제 및 특성 연구)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • Fibrinolytic enzyme has been isolated and purified from the edible mushroom, Lepista nuda. The apparent molecular mass of purified enzyme was estimated to be 34 KDa by SDS-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the enzyme was Tyr-Pro-Ser-Pro-Ser-His-Gln-Thr-Ala-Val-Asn-Ala-Ile-Ile-X. It has a pH optimum at $7.0.{\sim}9.5$, suggesting that the purified enzyme is an alkaline protease. It shows the maximum fibrinolytic activity at $55^{\circ}C$. The fibrinolytic activity was inhibited by phenylmethylsulfonyl fluoride, indicating that the purified enzyme is a serine protease. The activity of the purified enzyme was totally inhibited by $Hg^{2+}$.

Cloning and Expression of a Alkaline Protease from Bacillus clausii I-52 (Bacillus clausii I-52로부터 alkaline protease 유전자의 클로닝 및 발현)

  • Joo, Han-Seung;Choi, Jang Won
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.201-212
    • /
    • 2011
  • The alkaline protease gene was cloned from a halo-tolerant alkalophilic Bacillus clausii I-52 isolated from the heavily polluted tidal mud flat of West Sea in Inchon Korea, which produced a strong extracellular alkaline protease (BCAP). Based on the full genome sequence of Bacillus subtilis, PCR primers were designed to allow for the amplification and cloning of the intact pro-BCAP gene including promoter region. The full-length gene consists of 1,143 bp and encodes 381 amino acids, which includes 29 residues of a putative signal peptide and an additional 77-amino-acid propeptide at its N-terminus. The mature BCAP deduced from the nucleotide sequence consists of 275 amino acids with a N-terminal amino acid of Ala, and a relative molecular weight and pI value was 27698.7 Da and 6.3, respectively. The amino acid sequence shares the highest similarity (99%) to the nattokinase precursor from B. subtilis and subtilisin E precursor from B. subtilis BSn5. The substrate specificity indicated that the recombinant BCAP could hydrolyze efficiently the synthetic substrate, N-Suc-Ala-Ala-Pro-Phe-pNA,and did not hydrolyze the substrates with basic amino acids at the P1 site. The recombinant BCAP was strongly inhibited by typical serine protease inhibitor, PMSF, indicating that BCAP is a member of the serine proteases.

Production of Bleach-Stable and Halo-Tolerant Alkaline Protease by an Alkalophilic Bacillus pumilus JB05 Isolated from Cement Industry Effluents

  • Johnvesly, B.;Naik, Gajanan R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.558-563
    • /
    • 2001
  • A new alkalophilic strain of Bacillus pumilus JB¬05 producing bleach-stable and halo-tolerant alkaline protease was isolated from cement industry effluents in Karnataka, India. The effects of carbon and nitrogen sources on protease production by this alkalophilic strain were observed after a 30-h incubation. A high level of alkaline protease activity was obtained in the presence of starch as the carbon and peptone as the nitrogen sources. The partially purified enzyme showed an optimum temperature and pH activity at $58^{\circ}C$ and 10.5, respectively. The enzyme was completely inhibited by PMSF (95.0%) indicating it as a serine protease. It is bleach-stable as it retained 35% original activity in the presence of 10% (v/v) hydrogen peroxide at $30^{\circ}$C after 2 h and is halo-tolerant as it retained 70% original activity in the presence of 2.5 M sodium chloride at $30^{\circ}C$ after 2 h incubation.

  • PDF

Characterization of a Fibrinolytic Serine Protease from an Edible Mushroom, Albatrellus confluens (다발구멍장이버섯으로부터 분리한 혈전용해 세린분해효소의 특성 연구)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • A fibrinolytic serine protease was purified from the fruiting bodies of an edible mushroom, Albatrellus confluens. The enzyme had a molecular mass of 30086.41 Da, as measured by MALDI-TOF mass spectrometry. The N-terminal amino acid sequence of the enzyme was Glu-Thr-Val-Thr-Glu-Thr-Thr-Ala -Pro-Trp-Gly-Leu-Ser-Arg-Ile. It displayed optimal activity at $50^{\circ}C$ and within a pH range of $8.0{\sim}10.0$, suggesting that the enzyme is an alkaline protease. The enzyme was stable up to $30^{\circ}C$. The enzyme displayed a strong substrate specificity for the synthetic peptide, N-Suc-Ala-Ala-Pro-Phe pNA. The enzyme activity was completely inhibited by addition of PMSF, indicating that the enzyme is a serine protease. No inhibition was observed following addition of E-64, pepstatin, or EDTA. The activity of the purified enzyme was decreased in the presence $Fe^{2+}$ or $Co^{2+}$, and the enzyme was completely inhibited by addition of $Hg^{2+}$. From these results, we propose that Albatrellus confluens could be used for biofunctional foods development and has potential therapeutic value for the treatment of vascular diseases.

Production and Characterization of Alkaline Protease of Micrococcus sp. PS-1 Isolated from Seawater (해수에서 분리한 Micrococcus sp. PS-1이 생산하는 단백질 분해효소의 생산과 효소학적 특성)

  • Jin, Young-Rang;Yu, Sun-Nyoung;Kim, Kwang-Youn;Kim, Sang-Hun;Park, Seul-Ki;Kim, Hyeun-Kyeung;Lee, Yong-Seok;Choi, Yong-Lark;Ji, Jae Hoon;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.273-281
    • /
    • 2013
  • The purpose of this research was to investigate the production and characterization of alkaline protease from Micrococcus sp. PS-1 newly isolated from seawater. Micrococcus sp. PS-1 was grown in Luria-Bertani (LB) medium. Its optimal temperature and pH for growth were $30^{\circ}C$ and 7.0, respectively. The effect of nitrogen sources was investigated on optimal enzyme production. A high level of alkaline protease production occurred in LB broth containing 2% skimmed milk. The protease was purified in a 3-step procedure involving ultrafiltration, acetone precipitation, and dialysis. The procedure yielded a 16.43-purification fold, with a yield of 54.25%. SDS-PAGE showed that the enzyme had molecular weights of 35.0 and 37.5 kDa. Its maximum protease activity was exhibited at pH 9.0 and $37^{\circ}C$, and its activity was stable at pH 8.0-11.0 and $25-37^{\circ}C$. The protease activity was strongly inhibited by PMSF, EDTA, and EGTA. Taken together, the results demonstrate that the protease enzyme from Micrococcus sp. PS-1 probably belongs to a subclass of alkaline metallo-serine proteases.

Minor Thermostable Alkaline Protease Produced by Thermoactinomyces sp. E79

  • Kim, Young-Ok;Lee, Jung-Kee;Sunitha, Kandula;Kim, Hyung-Kwoun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.469-474
    • /
    • 1999
  • Thermoactinomyces sp. E79 produced two types of thermostable alkaline proteases extracellularly. A minor protease was separated from a major protease by using DEAE-column chromatography. This enzyme was purified to homogeneity by ammonium sulfate and DEAE-Sepharose ion-exchange chromatography. The purified minor protease showed different biochemical properties compared to the major protease. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 36 kDa. Its optimum temperature and pH for proteolytic activity against Hammarsten casein were $70^{\circ}C$ and 9.0, respectively. The enzyme was stable up to$75^{\circ}C$ and in an alkaline pH range of 9.0-11.0. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF) and $Hg^{2+}, indicating that the enzyme may be a cysteine-dependent serine protease. In addition, the enzyme cleaved the endoproteinase substrate, succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, and the $K_m$ value for the substrate was 1.2 mM.

  • PDF

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Production and Characterization of an Alkaline Protease from Bacillus licheniformis MH31

  • Yu, Jeong-Hyeon;Jin, Hyun-Seok;Choi, Woo-Young;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.135-139
    • /
    • 2006
  • A alkalophilic strain, Bacillus licheniformis MH31 producing an alkaline protease was isolated from mine soil of Boryeong in Korea. Production of a high level of alkaline protease was achieved 42 h after incubation when the bacterium was grown at pH 9.0 and $35^{\circ}C$ in Horikoshi medium supplemented with 0.5%(w/v) starch and 1%(w/v) skim milk as carbon and nitrogen source, respectively. The molecular weight of partially purified enzyme was estimated to be 30 kDa by SDS-PAGE and its optimum pH was pH 10. The enzyme showed optimum temperature at $50^{\circ}C$, and was stable up to $60^{\circ}C$ after 1 h incubation. The protease was strongly inhibited by 1 mM of PMSF which was known well as strong inhibitor of serine proteases, but almost not inhibited by 5 mM of EDTA and 1,10-phenanthroline. When the protein hydrolysis products of 1% skim milk by partially purified protease was compared with available commercial proteases using HPLC analysis, most of hydrolysis products were detected below molecular weight of 10,000 and the hydrolysis ratio of purified enzyme was 24.8% lower than those(above 32%) of commercial proteases.

Purification and Characterization of Thermotolerable Alkaline Protease by Alkalophilic Bacillus sp. No. 8-16 (알칼리성 Bacillus sp. No.8-16의 내열ㆍ알칼리성 단백질 분해효소의 정제와 특성)

  • Bae, Moo;Park, Pil-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.545-551
    • /
    • 1989
  • Thermostable alkaline protease of alkalophilic Bacillus sp. No. 8-16 has been purified, and the properties of the enzyme investigated. The characteristic point of the organism used is especially good growth in alkaline and thermal condition. The alkaline protease of the strain No. 8-16 was purified from crude enzyme by acetone precipitation, CM-cellulose ion exchange chromatography, Sephadex G-100 and Sephadex G-75 gel filtration. Through the series of chromatograpies, the enzyme was purified to homogeneity with specific activity of 37 fold higher than that of the crude broth. Characteristics of the purified enzyme were as follow; $K_m$ value for the enzyme was 1.3 mg/ml, the alkaline protease showed a maximal activity at 7$0^{\circ}C$ and from the pH 6.0 through 12.0, and stable for 1 hr. at 6$0^{\circ}C$. The moleclar weight of the enzyme was estimated to be 33,000 by Sephadex G-100 gel filtration. The activity of the alkaline protease was inhibited by iodoacetic acid and Ag$^+$, Hg$^+$, PMSF (phenylmethylsulfonyl fluoride), and activated by $Ca^{2+}$ and Mn$^{2+}$.

  • PDF

Characterization of extracellular proteases from alkalophilic vibrio sp. strain RH 530

  • Kwon, Yong-Tae;Moon, Sun-Young;Kim, Jin-Oh;Kho, Yung-Hee;Rho, Hyune-Mo
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.501-506
    • /
    • 1992
  • An alkalophilic Vibrio sp. RH530 showing high proteolytic activity was isolated form soil samples by enrichment culture. The activity staining using gelatin SDS- polyacrylamide gel electrophoresis (PAGE ) revealed that the strain produced an alkaline major protease (Apr B) with a size of 27 kDa, and at least six minor proteases. The apparent sizes of four of the minor proteases were approximately 45, 28, 22 and 19 kDa. Apr B and five of the minor proteases were inhibited by serine protease inhibitors including PMSF and DFP, suggesting that they are serine proteases. One of the minor proteases was inhibited by metalloprotease inhibitors, not by serine protease inhibitors, indicating it to be a metalloprotease. Furthermore, the activities of Apr B and Prt 3 were not inhibited by SDS in the reaction mixture. The production of Apr B and some of the minor proteases was specifically affected by culture temperature (30 to 37.deg.C) and pH (7 to 10). The production of Apr B. Prt 2, Prt 5 and Prt 6 was mainly affected by culture temperature, while Prt 4 by culture pH. Prt 1 and Prt 3 were not affected by neither of these factors.

  • PDF